DOI QR코드

DOI QR Code

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K. (Department of Gastronomy and Culinary Arts, Faculty of Fine Arts, Design and Architecture, Munzur University) ;
  • Aydogdu, Burcu (Department of Mechanical Engineering, Faculty of Engineering, Munzur University) ;
  • Alp, Hevidar (Rare Earth Elements Application and Research Center, Munzur University) ;
  • Ince, Muharrem (Rare Earth Elements Application and Research Center, Munzur University)
  • 투고 : 2019.11.06
  • 심사 : 2020.10.16
  • 발행 : 2021.01.25

초록

In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.

키워드

참고문헌

  1. Ahmed, R.A. and Fekry, A.M. (2013), "Preparation and characterization of a nanoparticles modified chitosan sensor and its application for the determination of heavy metals from different aqueous media", Int. J. Electrochem. Sci., 8, 6692-6708.
  2. Alizadeh, B., Delnavaz, M. and Shakeri, A. (2018), "Removal of Cd(II) and phenol using novel cross-linked magnetic EDTA/chitosan/TiO2 nanocomposite", Carbohydr. Polym., 181, 675-683. https://doi.org/10.1016/j.carbpol.2017.11.095.
  3. Alp, H., Ince, M., Kaplan Ince, O. and Onal, A. (2019), "Adsorptive removal of Eriochrome Black-T using Agaricus campestris: Parameters optimization with response surface methodology", Desalination Water Treat., In Press.
  4. Asgari, S., Fakhari, Z. and Berijani, S. (2014), "Synthesis and characterization of Fe3O4 magnetic nanoparticles coated with carboxymethyl chitosan grafted sodium methacrylate", J. Nanostruct., 4(1), 55-63.
  5. Bakraouy, H., Souabi, S., Digua, K., Dkhissi, O., Sabar, M. and Fadil, M. (2017), "Optimization of the treatment of an anaerobic pretreated landfill leachate by a coagulation-flocculation process using experimental design methodology", Process Saf. Environ. Prot., 109, 621-630. https://doi.org/10.1016/j.psep.2017.04.017.
  6. Balaz, M., Balazova, L., Kovacova, M., Daneu, N., Salayova, A., Bedlovicova, Z. and Tkacikova, L. (2019), "The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles", Adv. Nano Res., Int. J., 7(2), 125-134. https://doi.org/10.12989/anr.2019.7.2.125.
  7. Bhagawati, D., Thakur, S. and Karak, N. (2016), "Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite", Adv. Nano Res., Int. J., 4(1), 15-29. https://doi.org/10.12989/anr.2016.4.1.015.
  8. Bhatnagar, A. and Minocha, A.K. (2010), "Biosorption optimization of nickel removal from water using Punica granatum peel waste", Colloids Surf. B Biointerf., 76, 544-548. https://doi.org/10.1016/j.colsurfb.2009.12.016.
  9. Boujelben, N., Bouzid, J. and Elouear, Z. (2009), "Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems", J. Hazard. Mater., 163(1), 376-382. https://doi.org/10.1016/j.jhazmat.2008.06.128.
  10. Chen, B., Zhao, H., Chen, S., Long, F., Huang, B., Yang, B. and Pan, X. (2019), "A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater", Chem. Eng. J., 356, 69-80. https://doi.org/10.1016/j.cej.2018.08.222.
  11. Chen, X., Zhang, Z., Li, X. and Shi, C. (2006), "Hollow magnetite spheres: Synthesis, characterization, and magnetic properties", Chem. Phys. Lett., 422, 294-298. https://doi.org/10.1016/j.cplett.2006.02.082.
  12. Chu, K.H. (2004), "Improved fixed bed models for metal biosorption", Chem. Eng. J., 97, 233-239. https://doi.org/10.1016/S1385-8947(03)00214-6.
  13. Denkhaus, E. and Salnikow, K. (2002), "Nickel essentiality, toxicity, and carcinogenicity", Crit. Rev. Oncol. Hematol., 42(1), 35-56. https://doi.org/10.1016/S1040-8428(01)00214-1.
  14. Ding, Y., Shen, S.Z., Sun, H., Sun, K., Liu, F., Qi, Y. and Yan, J. (2015), "Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug deliver", Mater. Sci. Eng. C, 48, 487-498. https://doi.org/10.1016/j.msec.2014.12.036.
  15. Elbialy, N.S., Fathy, M.M. and Khalil, W.M. (2014), "Preparation and characterization of magnetic gold nanoparticles to be used as doxorubicin nanocarriers", Phys. Med., 30(7), 843-848. https://doi.org/10.1016/j.ejmp.2014.05.012.
  16. Esalah, J. and Husein, M.M. (2008), "Removal of heavy metals from aqueous solutions by precipitation-filtration using novel organo-phosphorus ligands", Sep. Sci. Technol., 43, 3461-3475. https://doi.org/10.1080/01496390802219661.
  17. Eticha, T. and Hymete, A. (2014), "Health risk assessment of heavy metals in locally produced beer to the population in Ethiopia", J. Bioanal. Biomed., 6, 65-68. https://doi.org/10.4172/1948-593X.1000114.
  18. Fonseca, B., Teixeira, A., Figueiredo, H. and Tavares, T. (2009), "Modelling of the Cr (VI) transport in typical soils of the north of Portugal", J. Hazard. Mater., 167, 756-762. https://doi.org/10.1016/j.jhazmat.2009.01.049.
  19. Garg, K.U., Kaur, M.P., Garg, V.K. and Sud, D. (2008), "Removal of nickel (II) from aqueous solutionby adsorption on agriculture waste biomass using a response surface methodological approach", Bioresour. Technol., 99(5), 1325-1331. https://doi.org/10.1016/j.biortech.2007.02.011.
  20. Gu, H., Xu, K., Xu, C. and Xu, B. (2006), "Biofunctional magnetic nanoparticles for protein separation and pathogen detection", Chem. Commun., 9, 941-949. https://doi.org/10.1039/B514130C.
  21. Guo, X., Du, B., Wei, Q., Yang, J., Hu, L., Yan, L. and Xu, W. (2014), "Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water", J. Hazard Mater., 278, 211-220. https://doi.org/10.1016/j.jhazmat.2014.05.075.
  22. Haddad, P.S., Martins, T.M., D'Souza-Li, L., Li, L.M., Metze, K., Adam, R.L., Knobel, M. and Zanchet, D. (2008), "Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications", Mater. Sci. Eng. C, 28(4), 489-494. https://doi.org/10.1016/j.msec.2007.04.014.
  23. Hanafiah, M.A.K.M., Zakaria, H. and Ngah, W.S.W. (2010), "Base treated cogon grass (imperata cylindrica) as an adsorbent for the removal of Ni (II): Kinetic, isothermal and fixed-bed column studies", Clean Soil Air Water, 38, 248-256. https://doi.org/10.1002/clen.200900206.
  24. Hepziba Suganthi, S. and Kandasamy, R. (2017), "A novel single step synthesis and surface functionalization of iron oxide magnetic nanoparticles and thereof for the copper removal from pigment industry effluent", Sep. Purif. Technol., 188, 458-467. https://doi.org/10.1016/j.seppur.2017.07.059.
  25. Hritcu, D., Popa, M.I., Popa, N., Badescu, V. and Balan, V. (2009), "Preparation and characterization of magnetic chitosan nanospheres", Turk. J. Chem., 33, 785-796.
  26. Hu, J., Chen, G. and Lo, I.M.C. (2006), "Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanism", J. Environ. Eng., 132(7), 702-715. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:7(709).
  27. Hu, P., Yu, L., Zuo, A., Guo, C. and Yuan, F. (2009), "Fabrication of monodisperse magnetite hollow spheres", J. Phys. Chem. C, 113, 900-906. https://doi.org/10.1021/jp806406c.
  28. Ince, M. (2014), "Comparision of Low-cost and eco-friendly adsorbent for adsorption of Ni(II)", At. Spectrosc., 35, 223-233. https://doi.org/10.46770/AS.2014.05.006
  29. Ince, M. and Kaplan Ince, O. (2017), "Box-Behnken design approach for optimizing removal of copper from wastewater using a novel and green adsorbent", At. Spectrosc., 38, 200-207. https://doi.org/10.46770/AS.2017.06.005
  30. Ince, M. and Kaplan Ince, O. (2019a), "Application of response surface methodological approach to optimize removal of Cr ions from industrial wastewater", At. Spectrosc., 40, 91-97. https://doi.org/10.46770/AS.2019.03.003
  31. Ince, M. and Kaplan Ince, O. (2019b), "Heavy metal removal techniques using response surface methodology: Water/wastewater treatment", IntechOpen, 2019, 88915. https://doi.org/10.5772/intechopen.88915.
  32. Ince, M., Kaplan Ince, O., Asam, E. and Onal, A. (2017), "Using food wastes biomass as effective adsorbents in water and wastewater treatment for Cu(II) removal", At. Spectrosc., 38, 142-148. https://doi.org/10.46770/AS.2017.05.004
  33. Kadirvelu, K., Thamaraiselvi, K. and Namasivayam, C. (2001), "Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from Coirpith", Sep. Purif. Technol., 124(3), 497-505. https://doi.org/10.1016/S1383-5866(01)00149-6.
  34. Kaplan Ince, O., Ince, M., Yonten, V. and Goksu, A. (2017), "A food waste utilization study for removing Lead(II) from drinks", Food Chem., 214, 637-643. https://doi.org/10.1016/j.foodchem.2016.07.117.
  35. Kaplan Ince, O., Ince, M. and Onal, A. (2018), "Response Surface modeling for Pb(II) removal from alcoholic beverages using natural clay: Process optimization with Box-Behnken experimental design and determination by electrothermal AAS", At. Spectrosc., 39, 242-250. https://doi.org/10.46770/AS.2018.06.004
  36. Katsou, E., Malamis, S., Haralambous, K.J. and Loizidou, M. (2010), "Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater", J. Membr. Sci., 360(1-2), 234-249. https://doi.org/10.1016/j.memsci.2010.05.020.
  37. Landaburu-Aguirre, J., Pongracz, E., Peramaki, P. and Keiski, R.L. (2010), "Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimization", J. Hazard. Mater., 180, 524-534. https://doi.org/10.1016/j.jhazmat.2010.04.066.
  38. Lee, S.Y. and Harris, M.T. (2006), "Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents", J. Coll. Interf. Sci., 293, 401-408. https://doi.org/10.1016/j.jcis.2005.06.062.
  39. Li, G., Jiang, Y., Huang, K., Ding, P. and Chen, J. (2008), "Preparation and properties of magnetic Fe3O4-chitosan nanoparticles", J. Alloys Compd., 466, 451-456. https://doi.org/10.1016/j.jallcom.2007.11.100.
  40. Liu, Z.L., Wang, H.B., Lu, Q.H., Du, G.H., Peng, L., Du, Y.Q., Zhang, S.M. and Yao, K.L. (2004), "Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticle", J. Magn. Magn. Mater., 283(2-3), 258-262. https://doi.org/10.1016/j.jmmm.2004.05.031.
  41. Liu, J., Liu, W., Wang, Y., Xu, M. and Wang, B. (2016), "A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu (II) from aqueous solutions", Appl. Surf. Sci., 367, 327-334. https://doi.org/10.1016/j.apsusc.2016.01.176.
  42. Mak, S.Y. and Chen, D.H. (2005), "Binding and sulfonation of poly (acrylic acid) on iron oxide nanoparticles: A novel, magnetic, strong acid cation nano-adsorbent", Macromol. Rapid Comm., 26, 1567-1571. https://doi.org/10.1002/marc.200500397.
  43. Malarkodi, C., Rajeshkumar, S., Paulkumar, K., Gnana Jobitha, G., Vanaja, M. and Annadurai, G. (2013), "Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila", Adv. Nano Res., Int. J., 1(2), 83-91. https://doi.org/10.12989/anr.2013.1.2.083.
  44. Miralles, N., Valderrama, C., Casas, I., Martinez, M. and Florido, A. (2010), "Cadmium and lead removal from aqueous solution by grape stalk wastes: Modeling of a fixed-bed column", J. Chem. Eng. Data, 55, 3548-3554. https://doi.org/10.1021/je100200w.
  45. Mohan, D., Sarswat, A., Singh, V.K., Alexandre-Franco, M. and Pittman Jr., C.U. (2011), "Development of magnetic activated carbon from almond shells for trinitrophenol removal from water", Chem. Eng. J., 172, 1111-1125. https://doi.org/10.1016/j.cej.2011.06.054.
  46. Mohsen-Nia, M., Montazeri P. and Modarress, H. (2007), "Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes", Desalination, 217, 276-281. https://doi.org/10.1016/j.desal.2006.01.043.
  47. Mondal, A., Mondal, A. and Mukherjee D. (2015), "Roomtemperature synthesis of cobalt nanoparticles and their use as catalysts for Methylene Blue and Rhodamine-B dye degradation", Adv. Nano Res., Int. J., 3(2), 67-79. https://doi.org/10.12989/anr.2015.3.2.067.
  48. Mondal, M., Dutta, M. and De, S. (2017), "A novel ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix membrane: Spinning, characterization and application in heavy metal removal", Sep. Purif. Technol., 188, 155-166. https://doi.org/10.1016/j.seppur.2017.07.013.
  49. Pacheco, S., Medina, M., Valencia, F. and Tapia, J. (2006), "Removal of inorganic mercury from polluted water using structured nanoparticles", J. Environ. Eng. ASCE., 132, 342-349. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:3(342).
  50. Padmavathy, V., Vasudevan, P. and Dhingra, S.C. (2003), "Biosorption of nickel (II) ions on Baker's yeast", Process Biochem., 38(10), 1389-1395. https://doi.org/10.1016/S0032-9592(02)00168-1.
  51. Pala, A., Serdar, O., Ince, M. and Onal, A. (2019), "Modeling approach with Box-Behnken design for optimization of Pb bioaccumulation parameters in Gammarus pulex (L., 1758)", At. Spectrosc., 40, 98-103. https://doi.org/10.46770/AS.2019.03.004
  52. Pan, B.C., Meng, F.W., Chen, X.Q., Pan, B.J., Li, X.T., Zhang, W.M., Zhang, X., Chen, J.L., Zhang, Q.X. and Sun, Y. (2005), "Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent", J. Hazard Mater., 124, 74-80. https://doi.org/10.1016/j.jhazmat.2005.03.052.
  53. Panneerselvam, P., Morad, N. and Tan, K.A. (2011), "Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution", J. Hazard Mater., 186(1), 160-168. https://doi.org/10.1016/j.jhazmat.2010.10.102.
  54. Punjabi, K., Mehta, S., Yedurkar, S., Jain, R., Mukherjee, S., Kale, A. and Deshpande, S. (2018), "Extracellular synthesis of silver nanoparticle by Pseudomonas hibiscicola - mechanistic approach", Adv. Nano Res., Int. J., 6(1), 81-92. https://doi.org/10.12989/anr.2018.6.1.081.
  55. Qin, B., Luo, H., Liu, G., Zhang, R., Chen, S., Hou, Y. and Luo, Y. (2012), "Nickel ion removal from wastewater using the microbial electrolysis cell", Bioresour. Technol., 121, 458-461. https://doi.org/10.1016/j.biortech.2012.06.068.
  56. Qu, J., Song, T., Liang, J., Bai, X., Li, Y., Wei, Y., Huang, S., Dong, L. and Jin, Y. (2019), "Adsorption of lead (II) from aqueous solution by modified Auricularia matrix waste: A fixed-bed column study", Ecotoxicol. Environ. Saf., 169, 722-729. https://doi.org/10.1016/j.ecoenv.2018.11.085.
  57. Serdar, O., Pala, A., Ince, M. and Onal, A. (2019), "Modelling cadmium bioaccumulation in Gammarus pulex by using experimental design approach", Chem. Ecol., 35(10), 922-936. https://doi.org/10.1080/02757540.2019.1670814.
  58. Shanmugapriya, A., Ramammurthy, R., Munusamy, V. and Parapurath, S.N. (2011), "Optimization of ceric ammonium nitrate initiated graft copolymerization of acrylonitrile onto chitosan", J. Water Resour. Prot., 3(6), 380-386. https://doi.org/10.4236/jwarp.2011.36048.
  59. Sharma, Y.C. and Srivastava, V. (2010), "Separation of Ni (II) ions from aqueous solutions by magnetic nanoparticles", J. Chem. Eng. Data., 55, 1441-1442. https://doi.org/10.1021/je900619d.
  60. Sharma, R. and Singh, B. (2013), "Removal of Ni (II) ions from aqueous solutions using modified rice straw in a fixed bed column", Bioresour. Technol., 146, 519-524. https://doi.org/10.1016/j.biortech.2013.07.146.
  61. Sharma, Y.C., Srivastava, V., Weng, C.H. and Upadhyay, S.N. (2009), "Removal of Cr (VI) from wastewater by adsorption on iron nanoparticles", Can. J. Chem. Eng., 87, 921-929. https://doi.org/10.1002/cjce.20230.
  62. Shen, Y.F., Tang, J., Nie, Z.H., Wang, Y.D., Ren, Y. and Zuo, L. (2009), "Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification", Sep. Purif. Technol., 68, 312-319. https://doi.org/10.1016/j.seppur.2009.05.020.
  63. Silva, V.A.J., Andrade, P.L., Silva, M.P.C., Bustamante, D.A., Valladares, L.D.L.S. and Albino Aguiar, J. (2013), "Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides", J. Magn. Magn. Mater., 343, 138-143. https://doi.org/10.1016/j.jmmm.2013.04.062.
  64. Smara, A., Delimi, R., Chainet, E. and Sandeaux, J. (2007), "Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process", Sep. Purif. Technol., 57, 103-110. https://doi.org/10.1016/j.seppur.2007.03.012.
  65. Supraja, N., Dhivya, J., Prasad, T.N.V.K.V. and David, E. (2018), "Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassum muticum) silver nanoparticles against breast cancer cells (MCF 7) cell line", Adv. Nano Res., Int. J., 6(2), 183-200. https://doi.org/10.12989/anr.2018.6.2.183.
  66. Teja, A.S. and Koh, P.Y. (2009), "Synthesis, properties, and application of magnetic iron oxide nanoparticles", Progr. Cryst. Growth Charact. Mater., 55, 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003.
  67. Tsega, M. and Dejene, F.B. (2017), "Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property", Heliyon, 3(2), 1-16. https://doi.org/10.1016/j.heliyon.2017.e00246.
  68. Volesky, B. (2001), "Detoxification of metal-bearing effluents: biosorption for the next century", Hydrometallurgy, 59(2-3), 203-216. https://doi.org/10.1016/S0304-386X(00)00160-2.
  69. Wang, Z., Liu, X., Lv, M. and Meng, J. (2010), "A new kind of mesoporous Fe7Co3/carbon nanocomposite and its application as magnetically separable adsorber", Mater. Lett., 64(10), 1219-1221. https://doi.org/10.1016/j.matlet.2010.02.055.
  70. Yuwei, C. and Jianlong, W. (2011), "Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal", Chem. Eng. J., 168(1), 286-292. https://doi.org/10.1016/j.cej.2011.01.006.
  71. Zhou, J., Wu, W., Caruntu, D., Yu, M.H., Martin, A., Chen, J.F., O'Connor, C.J. and Zhou, W.L. (2007), "Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application", J. Phys. Chem. C, 111(47), 17473-17477. https://doi.org/10.1021/jp074123i.
  72. Zhou, S., Li, Y., Cui, F., Jia, M., Yang, X., Wang, Y., Xie, L., Zhang, Q. and Hou, Z. (2014), "Development of multifunctional folate-poly (ethylene glycol) chitosan-coated Fe3O4 nanoparticles for biomedical applications", Macromol. Res., 22, 58-66. https://doi.org/10.1007/s13233-014-2008-y.
  73. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V., Zangeneh, H. and Beygzadeh, M. (2014), "Novel high flux antifouling nanofiltration membranes for dye removalcontaining carboxymethyl chitosan coated Fe3O4 nanoparticles", Desalination, 349, 145-154. https://doi.org/10.1016/j.desal.2014.07.007.