DOI QR코드

DOI QR Code

Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds

  • Nezadi, Maryam (Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Keshvari, Hamid (Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Yousefzadeh, Maryam (Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic))
  • 투고 : 2019.11.01
  • 심사 : 2020.11.09
  • 발행 : 2021.01.25

초록

Electrospinning is a cost-effective and versatile method for producing submicron fibers. Although this method is relatively simple, at the theoretical level the interactions between process parameters and their influence on the fiber morphology are not yet fully understood. In this paper, the aim was finding optimal electrospinning parameters in order to obtain the smallest fiber diameter by using Taguchi's methodology. The nanofibers produced by electrospinning a solution of Thermoplastic Polyurethane (TPU) in Dimethylformamide (DMF). Polymer concentration and process parameters were considered as the effective factors. Taguchi's L9 orthogonal design (4 parameters, 3 levels) was applied to the experiential design. Optimal electrospinning conditions were determined using the signal-to-noise (S/N) ratio with Minitab 17 software. The morphology of the nanofibers was studied by a Scanning Electron Microscope (SEM). Thereafter, a tensile tester machine was used to assess mechanical properties of nanofibrous scaffolds. The analysis of DoE experiments showed that TPU concentration was the most significant parameter. An optimum combination to reach smallest diameters was yielded at 12 wt% polymer concentration, 16 kV of the supply voltage, 0.1 ml/h feed rate and 15 cm tip-to-distance. An empirical model was extracted and verified using confirmation test. The average diameter of nanofibers at the optimum conditions was in the range of 242.10 to 257.92 nm at a confidence level 95% which was in close agreement with the predicted value by the Taguchi technique. Also, the mechanical properties increased with decreasing fibers diameter. This study demonstrated Taguchi method was successfully applied to the optimization of electrospinning conditions for TPU nanofibers and the presented scaffold can mimic the structure of Extracellular Matrix (ECM).

키워드

과제정보

The authors acknowledge the Nanofibers and Electrospinning Lab and Amirkabir University of Technology for the support to do this work.

참고문헌

  1. Abdelhakim, H.E., Coupe, A., Tuleu, C., Edirisinghe, M. and Craig, D.Q. (2019), "Electrospinning optimization of eudragit E PO with and without chlorpheniramine maleate using a design of experiment approach", Mol. Pharm., 16(6), 2557-2568. https://doi.org/10.1021/acs.molpharmaceut.9b00159.
  2. Albetran, H., Dong, Y. and Low, I.M. (2015), "Characterization and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method", J. Asian Ceramic Soc., 3(3), 292-300. https://doi.org/10.1016/j.jascer.2015.05.001.
  3. Amini, N., Kalaee, M., Mazinani, S., Pilevar, S. and Ranaei-Siadat, S.O. (2013), "Morphological optimization of electrospun polyacrylamide/MWCNTs nanocomposite nanofibers using Taguchi's experimental design", Int. J. Adv. Manuf. Technol., 69(1-4), 139-146. https://doi.org/10.1007/s00170-013-5006-x.
  4. Andrzej, M., Srecko, K., Maruda, R.W., Stanislaw, L. and Krolczyk, G.M. (2015), "Taguchi design of experiment versus dynamic programming approach in the optimization of turning process", Appl. Mech. Mater., 808, 66. https://doi.org/10.4028/www.scientific.net/AMM.808.66.
  5. Anindyajati, A., Boughton, P. and Ruys, A.J. (2018), "Modelling and optimization of polycaprolactone ultrafine-fibres electrospinning process using response surface methodology", Materials, 11(3), 1-23. https://doi.org/10.3390/ma11030441.
  6. Aydin, M.R. and Gundogdu, O. (2018), "Vibration analysis of honeycomb sandwich composites filled with polyurethane foam by Taguchi Method", Steel Compos. Struct., Int. J., 28(4), 461-470. https://doi.org/10.12989/SCS.2018.28.4.461.
  7. Baji, A., Mai, Y.W., Wong, S.C., Abtahi, M. and Chen, P. (2010), "Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties", Compos. Sci. Technol., 70(5), 703-718. http://dx.doi.org/10.1016/j.compscitech.2010.01.010.
  8. Ballarin, F.M., Caracciolo, P., Blotta, E., Ballarin, V. and Abraham, G. (2014), "Optimization of poly (L-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures", Mater. Sci. Eng. C, 42, 489-499. https://doi.org/10.1016/j.msec.2014.05.074.
  9. Banuskeviciute, A., Adomaviciute, E., Milasius, R. and Stanys, S. (2011), "Formation of thermoplastic polyurethane (TPU) nano/micro fibers by electrospinning process using electrode with tines", Mater. Sci., 17(3), 287-292. https://doi.org/10.5755/j01.ms.17.3.595.
  10. Barnes, C.P., Sell, S.A., Boland, E.D., Simpson, D.G. and Bowlin, G.L. (2007), "Nanofiber technology: designing the next generation of tissue engineering scaffolds", Adv. Drug Deliver. Rev., 59(14), 1413-1433. https://doi.org/10.1016/j.addr.2007.04.022.
  11. Bhattarai, R.S., Bachu, R.D., Boddu, S.H. and Bhaduri, S. (2019), "Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery", Pharmaceutics, 11(1), 5. https://doi.org/10.3390/pharmaceutics11010005.
  12. Celep, G. and Dincer, K. (2017), "Optimization of parameters for electrospinning of polyacrylonitrile nanofibers by the Taguchi method", Int. Polym. Process, 32(4), 508-514. https://doi.org/10.3139/217.3411.
  13. Ceylan, S. and Bolgen, N. (2016), "A review on three dimensional scaffolds for tumor engineering", Biomater. Biomech. Bioeng., Int. J., 3(3), 141-155. http://dx.doi.org/10.12989/bme.2016.3.3.141.
  14. Chaudhari, S., Khedkar, S. and Borkar, N. (2011), "Optimization of process parameters using Taguchi approach with minimum quantity lubrication for turning", Int. J. Eng. Res. Appl., 1(4), 1268-1273.
  15. Christopherson, G.T., Song, H. and Mao, H.Q. (2009), "The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation", Biomaterials, 30(4), 556-564. https://doi.org/10.1016/j.biomaterials.2008.10.004.
  16. Demir, M.M., Yilgor, I., Yilgor, E. and Erman, B. (2002), "Electrospinning of polyurethane fibers", Polymer, 43(11), 3303-3309. https://doi.org/10.1016/S0032-3861(02)00136-2.
  17. Dong, Y., Bickford, T., Haroosh, H.J., Lau, K.T. and Takagi, H. (2013), "Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: Fibre diameter, non-intercalation and nucleation effects", Appl. Phys. A, 112(3), 747-757. https://doi.org/10.1007/s00339-013-7789-x.
  18. Douglasc, M. (2009), Design and Analysis of Experiments, Wiley, London, UK.
  19. Doustgani, A. (2016), "Optimization of mechanical and structural properties of PVA nanofibers", J. Ind. Text., 46(3), 901-913. https://doi.org/10.1177/1528083715601511.
  20. Drupitha, M.P., Das, B., Parameswaran, R., Dhara, S., Nando, G. B. and Naskar, K. (2018), "Hybrid electrospun fibers based on TPU-PDMS and spherical nanohydroxyapatite for bone tissue engineering", Mater. Today Commun., 16, 264-273. https://doi.org/10.1016/j.mtcomm.2018.06.013.
  21. Dufresne, A. (2017), Nanocellulose: From Nature to High Performance Tailored Materials, Walter de Gruyter GmbH & CoKG, Berlin, Germany.
  22. Elkasaby, M., Hegab, H.A., Mohany, A. and Rizvi, G.M. (2017), "Modeling and optimization of electrospinning of polyvinyl alcohol (PVA)", Adv. Polym. Technol., 37(6), 2114-2122. https://doi.org/10.1002/adv.21869.
  23. Ethier, C.R. and Simmons, C.A. (2007), Introductory Biomechanics: From Cells to Organisms, Cambridge University Press, London, UK.
  24. Fallahiarezoudar, E., Ahmadipourroudposht, M., Idris, A. and Yusof, N.M. (2017), "Optimization and development of Maghemite (γ-Fe2O3) filled poly-L-lactic acid (PLLA)/thermoplastic polyurethane (TPU) electrospun nanofibers using Taguchi orthogonal array for tissue engineering heart valve", Mater. Sci. Eng. C, 76, 616-627. http://dx.doi.org/10.1016/j.msec.2017.03.120.
  25. Hamed, A., Shehata, N. and Elosairy, M. (2017), "Investigation of conical spinneret in generating more dense and compact electrospun nanofibers", Polymers, 10(1), 12. https://doi.org/10.3390/polym10010012.
  26. Horuz, T.I. and Belibagli, K.B. (2017), "Production of electrospun gelatin nanofibers: An optimization study by using Taguchi's methodology", Mater. Res. Exp., 4(1), 1-9. https://doi.org/10.1088/2053-1591/aa57ea.
  27. Hotaling, N.A., Bharti, K., Kriel, H. and Simon, C.G. (2015), "Diameter J: A validated open source nanofiber diameter measurement tool", Biomaterials, 61, 327-338. https://doi.org/10.1016/j.biomaterials.2015.05.015.
  28. Jia, L., Prabhakaran, M.P., Qin, X. and Ramakrishna, S. (2014), "Guiding the orientation of smooth muscle cells on random and aligned polyurethane/collagen nanofibers", J. Biomater. Appl., 29(3), 364-377. https://doi.org/10.1177/0885328214529002.
  29. Jing, X., Mi, H.Y., Salick, M.R., Cordie, T.M., Peng, X.F. and Turng, L.S. (2015), "Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications", Mater. Sci. Eng. C, 49, 40-50. https://doi.org/10.1016/j.msec.2014.12.060.
  30. Karakas, H., Sarac, A., Polat, T., Budak, E., Bayram, S., Dag, N. and Jahangiri, S. (2013), "Polyurethane nanofibers obtained by electrospinning process", Int. J. Biol. Biomol. Agr. Food Biotechnol. Eng., 7(3), 177-180. http://doi.org/10.5281/zenodo.1061611.
  31. Kucinska-Lipka, J., Gubanska, I., Janik, H. and Sienkiewicz, M. (2015), "Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system", Mater. Sci. Eng. C, 46, 166-176. https://doi.org/10.1016/j.msec.2014.10.027.
  32. Kyzas, G. and Mitropoulos, A.C. (2018), Novel Nanomaterials: Synthesis and Applications, Intechopen, Croatia.
  33. Li, Z. and Wang, C. (2013a), One-dimensional Nanostructures: Effects of Working Parameters on Electrospinning, Springer, Berlin, Germany.
  34. Li, Z. and Wang, C. (2013b), One-dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers, Springer, Berlin, Germany.
  35. Li, H., Sinha, T.K., Oh, J.S. and Kim, J.K. (2018), "Soft and flexible bilayer thermoplastic polyurethane foam for development of bioinspired artificial skin", ACS Appl. Mater. Interf., 10(16), 14008-14016. https://doi.org/10.1021/acsami.8b01026.
  36. Mohammad Khanlou, H., Chin Ang, B., Talebian, S., Muhammad Afifi, A. and Andriyana, A. (2015), "Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments", Text. Res. J., 85(4), 356-368. https://doi.org/10.1177/0040517514547208.
  37. Mohammadian, M. and Haghi, A. (2014), "Systematic parameter study for nano-fiber fabrication via electrospinning process", Bulg. Chem. Commun., 46, 545-55.
  38. Patra, S., Easteal, A. and Bhattacharyya, D. (2009), "Parametric study of manufacturing poly (lactic) acid nanofibrous mat by electrospinning", J. Mater. Sci., 44(2), 647-654. https://doi.org/10.1007/s10853-008-3050-y.
  39. Pirsalami, S., Zebarjad, S. and Daneshmanesh, H. (2016), "Evaluation and optimization of electrospun polyvinyl alcohol fibers via Taguchi methodology", Int. Polym. Process., 31(4), 503-507. https://doi.org/10.3139/217.3278.
  40. Ruder, C., Sauter, T., Kratz, K., Haase, T., Peter, J., Jung, F. and Zohlnhofer, D. (2013), "Influence of fibre diameter and orientation of electrospun copolyetheresterurethanes on smooth muscle and endothelial cell behaviour", Clin. Hemorheol. Microcirc., 55(4), 513-522. https://doi.org/10.3233/CH-131787.
  41. Ruiter, F.A.A., Alexander, C., Rose, F.R. and Segal, J. (2017), "A design of experiments approach to identify the influencing parameters that determine poly-D, L-lactic acid (PDLLA) electrospun scaffold morphologies", Biomed. Mater., 12(5), 055009. https://doi.org/10.1088/1748-605X/aa7b54.
  42. Saligheh, O., Khajavi, R., Yazdanshenas, M. and Rashidi, A. (2015), "Fabrication and optimization of poly (vinyl alcohol)/zirconium acetate electrospun nanofibers using Taguchi experimental design", J. Macromol. Sci. Part B, 54(11), 1391-1403. https://doi.org/10.1080/00222348.2015.1085783.
  43. Sayed, M.A., Dawood, O.M., Elsayed, A.H. and Daoush, W.R. (2017), "Application of Taguchi method in optimization of process parameters of ODS tungsten heavy alloys", Adv. Mater. Res., Int. J., 6(1), 79-91. https://doi.org/10.12989/amr.2017.6.1.079.
  44. Sener, A.G., Altay, A.S. and Altay, F. (2011), "Effect of voltage on morphology of electrospun nanofibers", Proceedings of the Electrical and Electronics Engineering (ELECO): 7th International Conference on IEEE, Bursa, Turkey, January.
  45. Shahavi, M.H., Hosseini, M., Jahanshahi, M., Meyer, R.L. and Darzi, G.N. (2016), "Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method", Desalination Water Treat., 57(39), 18379-18390. https://doi.org/10.1080/19443994.2015.1092893.
  46. Tan, S., Inai, R., Kotaki, M. and Ramakrishna, S. (2005), "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process", Polymer, 46(16), 6128-6134. https://doi.org/10.1016/j.polymer.2005.05.068.
  47. Tarus, B., Fadel, N., Al-Oufy, A. and El-Messiry, M. (2016), "Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats", Alexandria Eng. J., 55(3), 2975-2984. https://doi.org/10.1016/j.aej.2016.04.025.
  48. Tascan, M. (2014), "Optimization of process parameters of wetspun solid PVDF fibers for maximizing the tensile strength and applied force at break and minimizing the elongation at break using the Taguchi method", J. Eng. Fabr. Fibers, 9(1), 165-173. https://doi.org/10.1177/155892501400900119.
  49. Tetteh, G., Khan, A., Delaine-Smith, R., Reilly, G. and Rehman, I. (2014), "Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles", J. Mech. Behav. Biomed. Mater., 39, 95-110. https://doi.org/10.1016/j.jmbbm.2014.06.019.
  50. Vigani, B., Rossi, S., Sandri, G., Bonferoni, M.C. and Ferrari, F. (2017), "Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury", Neural Regen. Res., 12(11), 1786-1790. https://doi.org/10.4103/1673-5374.219029.
  51. Xue, J., Wu, T., Dai, Y. and Xia, Y. (2019), "Electrospinning and electrospun nanofibers: methods, materials, and applications", Chem. Rev., 119(8), 5298-5415. https://doi.org/10.1021/acs.chemrev.8b00593.
  52. Yanilmaz, M., Kalaoglu, F. and Karakas, H. (2012), "Study on optimising the morphology of electrospun polyurethane nanofibers", J. Text. Appar. Tekstil. Konfeksiyon, 22(3), 212-217.
  53. Ye, K., Kuang, H., You, Z., Morsi, Y. and Mo, X. (2019), "Electrospun nanofibers for tissue engineering with drug loading and release", Pharmaceutics, 11(4), 182. https://doi.org/10.3390/pharmaceutics11040182.
  54. Zhang, C., Yuan, X., Wu, L., Han, Y. and Sheng, J. (2005), "Study on morphology of electrospun poly (vinyl alcohol) mats", Eur. Polym. J., 41(3), 423-432. https://doi.org/10.1016/j.eurpolymj.2004.10.027.
  55. Zhuo, H., Hu, J., Chen, S. and Yeung, L. (2008), "Preparation of polyurethane nanofibers by electrospinning", J. Appl. Polym. Sci., 109(1), 406-411. https://doi.org/10.5772/intechopen.69937.