DOI QR코드

DOI QR Code

On thermally induced instability of FG-CNTRC cylindrical panels

  • Hashemi, Razieh (Department of Civil Engineering, Faculty of Engineering, University of Qom) ;
  • Mirzaei, Mostafa (Department of Mechanical Engineering, Faculty of Engineering, University of Qom) ;
  • Adlparvar, Mohammad R. (Department of Civil Engineering, Faculty of Engineering, University of Qom)
  • 투고 : 2019.10.27
  • 심사 : 2020.09.29
  • 발행 : 2021.01.25

초록

In this study, thermally induced bifurcation buckling of shallow composite cylindrical panels reinforced with aligned single-walled carbon nanotubes is investigated. Distribution of carbon nanotubes across the thickness of the cylindrical panel as reinforcements may be either uniform or functionally graded. Thermo-mechanical properties of the matrix and reinforcements are considered to be temperature dependent. Properties of the cylindrical panel are obtained using a refined micromechanical approach which introduces the auxiliary parameters into the rule of mixtures. The governing equations are obtained by using the static version of the Hamilton principle based on the first-order shear deformation theory and considering the linear strain-displacement relation. An energy-based Ritz method and an iterative process are used to obtain the critical buckling temperature of composite cylindrical panel with temperature dependent material properties. In addition, the effect of various parameters such as the boundary conditions, different geometrical conditions, distribution pattern of CNTs across the thickness and their volume fraction are studied on the critical buckling temperature and buckled pattern of cylindrical panels. It is shown that FG-X type of CNT dispersion is the most influential type in thermal stability.

키워드

참고문헌

  1. Al-Khaleefi, A.M. (2004), "Thermal buckling of clamped cylindrical panels based on first-order shear deformation theory", Int. J. Struct. Stab. Dyn., 4(3), 313-336. https://doi.org/10.1142/S0219455404001252.
  2. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 2020, 1-12. https://doi.org/10.1007/s00366-020-01088-7.
  3. Amir, S., BabaAkbar-Zarei, H. and Khorasani, M. (2019), "Flexoelectric vibration analysis of nanocomposite sandwich plates", Mech. Based Des. Struct. Mach., 123(6), 1423-1431. https://doi.org/10.1080/15397734.2019.1624175.
  4. Ansari, M.I. and Kumar, A. (2019), "Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone", Mech. Based Des. Struct. Mach., 47(1), 67-86. https://doi.org/10.1080/15397734.2018.1519635.
  5. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2),133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  6. Aydogdu, M. (2008), "Conditions for functionally graded plates to remain flat under in-plane loads by classical plate theory", Compos. Struct., 82(1), 155-157. https://doi.org/10.1016/j.compstruct.2006.10.004.
  7. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, Int. J., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  8. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  9. Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Duc, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., Int. J., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243.
  10. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, Int. J., 24(4), 369-378. http://dx.doi.org/10.12989/cac.2019.24.4.369.
  11. Draoui, A., Zidour M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using FSDT", J. Nano Res. S.W., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  12. Ebrahimi, F. and Farazmandnia, N. (2018a), "Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment", Adv. Aircr. Spacecr. Sci., Int. J., 5(1), 107-128. https://doi.org/10.12989/aas.2018.5.1.107.
  13. Ebrahimi, F. and Farazmandnia, N. (2018b), "Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams", Steel Compos. Struct., Int. J., 27(2), 149-159. https://doi.org/10.12989/scs.2018.27.2.149.
  14. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Timon Rabczuk, T. (2019), "Thermal buckling analysis of embedded grapheneoxide powder-reinforced nanocomposite plates", Adv. Nano Res., Int. J., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
  15. Garcia, E.M., Rodriguez, L.T., Castro, R.T. and Andres, S. (2017), "Buckling analysis of functionally graded carbon nanotube reinforced curved panels under axial compression and shear", Compos. Part B, 108(1), 243-256. https://doi.org/10.1016/j.compositesb.2016.10.002.
  16. Han, Y. and Elliott, J. (2007), "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Comput. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.
  17. Hieu, P.T. and Tung, H.V. (2018), "Post-buckling behavior of CNT-reinforced composite cylindrical shell surrounded by an elastic medium and subjected to combined mechanical loads in thermal environments", J. Therm. Compos. Mater., 32(10), 1319-1346. https://doi.org/10.1177/0892705718796551.
  18. Hieu, P.T. and Tung, H.V. (2020), "Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges", J. Arch. Appl. Mech., 90, 1529-1546. https://doi.org/10.1007/s00419-020-01682-7.
  19. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  20. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., Int. J., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  21. Jones, R.M. (2005), "Thermal buckling of uniformly heated unidirectional and symmetric cross-ply laminated fiberreinforced composite uniaxial in-plane restrained simply supported rectangular plates", Compos. A Appl. Sci. Manuf., 36(10), 1355-1367. https://doi.org/10.1016/j.compositesa.2005.01.028.
  22. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037
  23. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplatetype temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
  24. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36, 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  25. Kiani, Y. (2016), "Thermal post-buckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets", J. Therm. Stresses, 39(9), 1098-1110. https://doi.org/10.1080/01495739.2016.1192856.
  26. Kiani, Y. (2017a), "Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates", J. Therm. Stresses, 40(11), 1442-1460. https://doi.org/10.1080/01495739.2017.1336742.
  27. Kiani, Y. (2017b), "Thermal post-buckling of FG-CNT reinforced composite plates", Compos. Struct., 159(1), 299-306. https://doi.org/10.1016/j.compstruct.2016.09.084.
  28. Kiani, Y. (2018), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets", J. Therm. Stresses, 41(7), 866-882. https://doi.org/10.1080/01495739.2018.1425645.
  29. Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006.
  30. Leissa, W. (1986), "Conditions for laminated plates to remain flat under inplane loading", Compos. Struct., 6(4), 261-270. https://doi.org/10.1016/0263-8223(86)90022-X.
  31. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A.A., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  32. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., Int. J., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  33. Mehar, M. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., Int. J., 7(3), 179-188. https://doi.org/10.12989/anr.2019.7.3.179.
  34. Mirzaei, M. (2018), "Thermal buckling of temperature-dependent composite super elliptical plates reinforced with carbon nanotubes", J. Therm. Stresses, 41(7), 920-935. https://doi.org/10.1080/01495739.2018.1429969.
  35. Mirzaei, M. (2020), "Vibration of FG-CNT reinforced composite cylindrical panels with cutout", Mech. Based Des. Struct. Mach., 41(7), 920-935. https://doi.org/10.1080/15397734.2019.1705165.
  36. Mirzaei, M. and Kiani, Y. (2016a), "Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels", Compos. Struct., 142(8), 45-56. https://doi.org/10.1016/j.compstruct.2015.12.071.
  37. Mirzaei, M. and Kiani, Y. (2016b), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", Meccanica, 51(9), 2185-2201. https://doi.org/10.1007/s11012-015-0348-0.
  38. Qatu, M.S. and Leissa A.W. (1993), "Buckling or transverse deflections of unsymmetrically laminated plates subjected to inplane loads", AIAA J., 31(1), https://doi.org/10.2514/3.11336.
  39. Qin, B., Zhong, R., Wang, T., Wang, Q., Xu, Y. and Hu, Z. (2020), "A unified Fourier series solution for vibration analysis of FGCNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions", Compos. Struct., 232(2), 111549. https://doi.org/10.1016/j.compstruct.2019.111549.
  40. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells, CRC Press, USA.
  41. Rezaiee-Pajand, M., Mokhtari, M. and Hozhabrossadati, S.M. (2019), "Application of Hencky bar-chain model to buckling analysis of elastically restrained Timoshenko axially functionally graded carbon nanotube reinforced composite beams", Mech. Based Des. Struct. Mach., 47(5), 599-620. https://doi.org/10.1080/15397734.2019.1596129.
  42. Shahedi, S. and Mohammadimehr, M. (2019), "Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments", Mech. Based Des. Struct. Mach., 48(5), 584-614. https://doi.org/10.1080/15397734.2019.1646661.
  43. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  44. Shen, H.S. (2016), "Post-buckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations subjected to lateral pressure in thermal environments", Eng. Struct., 122(17), 174-183. https://doi.org/10.1016/j.engstruct.2016.05.004.
  45. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048.
  46. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotube reinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56(14), 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002.
  47. Shen, H.S. and He, X.Q. (2017), "Large amplitude free vibration of nanotube-reinforced composite doubly curved panels resting on elastic foundations in thermal environments", J. Vib. Control, 23(16), 2672-2689. https://doi.org/10.1177/1077546315619280.
  48. Shen, H.S. and Wang, H. (2017), "Nonlinear vibration of compressed and thermally post-buckled nanotube reinforced composite plates resting on elastic foundations", Aerosp. Sci. Technol., 64, 63-74. https://doi.org/10.1016/j.ast.2017.01.017.
  49. Tayeb Si, T., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Adda Bedia, E.A. (2020), "Mechanical buckling of FGCNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., Int. J., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  50. Torabi, J. and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., Int. J., 68(3), 313-323. https://doi.org/10.12989/sem.2018.68.3.313.
  51. Torabi, J. and Ansari, R. (2020), "Numerical investigation on the buckling and vibration of cracked FG cylindrical panels based on the phase-field formulation", Eng. Fract. Mech., 228, 106895. https://doi.org/10.1016/j.engfracmech.2020.106895.
  52. Trang, T.N. and Tung, H.V. (2018), "Nonlinear stability of CNT-reinforced composite cylindrical panels with elastically restrained straight edges under combined thermomechanical loading conditions", J. Therm. Compos. Mater., 33(2), 153-179. https://doi.org/10.1177/0892705718805134.
  53. Tung, H.V. and Trang, T.N. (2018), "Thermal post-buckling of shear deformable CNT reinforced composite plates with tangentially restrained edges and temperature dependent properties", J. Therm. Compos. Mater., 33(1), 97-124. https://doi.org/10.1177/0892705718804588.
  54. Yazdi, A.A. (2019), "Nonlinear aeroelastic stability analysis of three-phase nano-composite plates", Mech. Based Des. Struct. Mach., 47(6), 753-768. https://doi.org/10.1080/15397734.2019.1610436.
  55. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., Int. J., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  56. Zhang, L.W. and Liew, K.M. (2016), "Post-buckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach", Compos. Struct., 138(4), 40-51. https://doi.org/10.1016/j.compstruct.2015.11.031.
  57. Zhang, L.W. and Xiao, L.N. (2017), "Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading", Compos. Part B Eng., 122, 219-30. https://doi.org/10.1016/j.compositesb.2017.03.041.
  58. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016), "Post-buckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression", Comput. Methods Appl. Mech. Eng., 298(1), 1-28. https://doi.org/10.1016/j.cma.2015.09.016.