DOI QR코드

DOI QR Code

Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method

  • Singh, Piyush P. (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines)) ;
  • Azam, Mohammad S. (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines))
  • 투고 : 2020.06.29
  • 심사 : 2020.09.29
  • 발행 : 2021.01.25

초록

In this article, the vibration behavior of embedded Functionally Graded Nanoplate (FGNP) employing nonlocal Kirchhoff's plate theory has been investigated under hygrothermal environment. The FGNP is considered to be supported by Winkler-Pasternak foundation. The Eringen's differential theory is used for size effect on the vibration of the FGNP. Rayleigh-Ritz method with orthogonal polynomials are employed for the governing equations and edge constraints. The advantage of this method is that it overcomes all the drawbacks of edge constraints and can easily handle any combinations of mixed edge constraints. The coefficients viz. moisture expansion, thermal expansion and elastic coefficients are considered to be transversely graded across the FGNP. The similarity of the calculated natural frequencies is examined with the previous research, and a good concurrency is seen. The objective of this article is to analyze the parameters' effect on the nondimensionalized frequency of embedded FGNP under hygrothermal environment subjected to all possible edge constraints. For this, uniform and linear rise of temperature and moisture concentration are considered. The study highlights that the nonlocal effect is pronounced for higher modes. Moreover, the effect of the Pasternak modulus is seen to be prominent compared to the Winkler modulus on non dimensionalized frequencies of FGNP.

키워드

과제정보

The research described in this paper was not financially supported by any organization or person.

참고문헌

  1. Adali, S. (2009), "Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model", Nano Lett., 9, 1737-1741. https://doi.org/10.1021/nl8027087.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, Int. J., 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  3. Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E Low Dimens. Syst. Nanostruct., 43(4), 954-959. https://doi.org/10.1016/j.physe.2010.11.024.
  4. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 2020, 1-18. https://doi.org/10.1007/s00366-020-01088-7.
  5. Analooei, H.R., Azhari, M. and Heidarpour, A. (2013), "Elastic buckling and vibration analyses of orthotropic nanoplates using nonlocal continuum mechanics and spline finite strip method", Appl. Math., 37(10-11), 6703-6717. https://doi.org/10.1016/j.apm.2013.01.051.
  6. Anjomshoa, A. (2013), "Application of Ritz functions in buckling analysis of embedded orthotropic circular and elliptical micro/nanoplates based on nonlocal elasticity theory", Meccanica, 48, 1337-1353. https://doi.org/10.1007/s11012-012-9670-y.
  7. Ansari, R., Shahabodini, A. and Shojaei, M.F. (2016), "Nonlocal three-dimensional theory of elasticity with application to free vibration of functionally graded nanoplates on elastic foundations", Physica E, 76, 70-81. https://doi.org/10.1016/j.physe.2015.09.042.
  8. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, Int. J., 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.
  9. Bahmyari, E., Banatehrani, M.M., Ahmadi., M. and Bahmyari, M. (2013), "Vibration analysis of thin plates resting on Pasternak foundations by element free Galerkin method", Shock Vib., 20, 309-326. https://doi.org/10.3233/SAV-2012-00746.
  10. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, Int. J., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  11. Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. http://dx.doi.org/10.12989/anr.2017.5.4.393.
  12. Barati, M.R. (2018), "Nonlocal stress-strain gradient vibration analysis of heterogeneous double-layered plates under hygrothermal and linearly varying in-plane loads", J. Vib. Control, 24(19), 4630-4647. https://doi.org/10.1177/1077546317731672.
  13. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  14. Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nanoplate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063.
  15. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., Int. J., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  16. Bendaho, B., Belabed, Z., Bourada, M., Benatta, M.A., Bourada, F. and Tounsi, A. (2019), "Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates", Adv. Nano Res., Int. J., 7(4), 277-292. https://doi.org/10.12989/anr.2019.7.4.277.
  17. Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., Int. J., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.
  18. Bensaid, I., Daikh, A.A. and Drai, A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 0954406220916481. https://doi.org/10.1177/0954406220916481.
  19. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., Int. J., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  20. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., Int. J., 6(2), 147-162. https://doi.org/10.12989/anr.2018.6.2.147.
  21. Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, Int. J., 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  22. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, Int. J., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  23. Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst., Int. J., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
  24. Boutaleb, S., Benrahou, K. H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., Int. J., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  25. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of functionally graded thin rectangular plates resting on Winkler elastic foundation with general boundary conditions using Rayleigh-Ritz method", Int. J. Appl. Mech., 6(4), 1450043. https://doi.org/10.1142/S1758825114500434
  26. Chen, C.S., Hsu, C.Y. and Tzou, G.J. (2009), "Vibration and stability of functionally graded plates based on a higher-order deformation theory", J. Reinf. Plast. Comp., 28(10), 1215-1234. https://doi.org/10.1177/0731684408088884.
  27. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R. Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., Int. J., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  28. Daikh, A.A. (2019), "Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/ Pasternak/Kerr foundation", Mater. Res. Exp., 6(6), 065702. https://doi.org/10.1088/2053-1591/ab097b.
  29. Daikh, A.A. (2020), "Thermal buckling analysis of functionally graded sandwich cylindrical shells", Adv. Aircr. Spacecr. Sci., 7(4), 335-351. https://doi.org/10.12989/aas.2020.7.4.335.
  30. Daikh, A.A. and Megueni, A. (2018), "Thermal buckling analysis of functionally graded sandwich plates", J. Therm. Stress, 41(2), 139-159. https://doi.org/10.1080/01495739.2017.1393644.
  31. ikh, A.A., Houari, M.S.A. and Tounsi, A. (2019), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Exp., 1(1), 015022. https://doi.org/10.1088/2631-8695/ab38f9.
  32. Daikh, A.A., Bensaid, I. and Zenmour, A.M. (2020a), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Exp., 2(1), 015006. https://doi.org/10.1088/2631-8695/ab638c.
  33. Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi, A. (2020b), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 2020, 1099636220909790. https://doi.org/10.1177/1099636220909790.
  34. Daikh, A.A., Guerroudj, M., El Adjrami, M. and Megueni, A. (2020c), "Thermal buckling of functionally graded sandwich beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43.
  35. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., Int. J., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
  36. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", J. Appl. Mech., 50, 609-614. https://doi.org/10.1115/1.3167098.
  37. Dym, C.L. and Shames, I.H. (1973), Solid Mechanics, McGrawHill, New York, USA.
  38. Ebrahimi, F. and Barati, M.R. (2017), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in twoparameter elastic foundation", Adv. Nano Res., Int. J., 5(4), 313-336. https://doi.org/10.12989/anr.2017.5.4.313.
  39. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179.
  40. Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higherorder shear deformation plate theory", Mech. Adv. Mater. Struct., 24, 761-772. https://doi.org/10.1080/15376494.2016.1196781.
  41. Ebrahimi, F. and Heidari, E. (2018), "Vibration characteristics of advanced nanoplates in humid-thermal environment incorporating surface elasticity effects via differential quadrature method", Struct. Eng. Mech., Int. J., 68(1), 131-157. https://doi.org/10.12989/sem.2018.68.1.131.
  42. Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80. https://doi.org/10.12989/anr.2018.6.1.057.
  43. Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111. https://doi.org/10.12989/anr.2016.4.2.085.
  44. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  45. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media, New York, USA.
  46. Filonenko-Borodich, M.M. (1940), "Some approximate theories of elastic foundation", Uchenyie Zapiski Moskovkogo Gosudarstuennogo Univ. Mekhanika, 46, 3-18.
  47. George, N., Pitchaimani, J., Murigendrappa, S.M. and Lenin Babu, M.C. (2018), "Vibro-acoustic behavior of functionally graded carbon nanotube reinforced polymer nanocomposite plates", P. I. Mech. Eng. L. J. Mat., 232, 566-581. https://doi.org/10.1177/1464420716640301.
  48. Hetenyi, M. (1950), "A general solution for the bending of beams on an elastic foundation of arbitrary continuity", J. Appl. Phys., 21(1), 55-58. https://doi.org/10.1063/1.1699420.
  49. Holubowski, R., Glabisz, W. and Jarczewska, K. (2019), "Transverse vibration analysis of a single-walled carbon nanotube under a random load action", Physica E Low Dimens. Syst. Nanostruct., 109, 242-247. https://doi.org/10.1016/j.physe.2019.01.030.
  50. Hosseini-Hashemi, S., Bedroud, M. and Nazemnezhad, R. (2013), "An exact analytical solution for free vibration of functionally graded circular/annular mindlin nanoplates via nonlocal elasticity", Compos. Struct., 103, 108-118. https://doi.org/10.1016/j.compstruct.2013.02.022.
  51. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., Int. J., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  52. Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020a), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, Int. J., 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411.
  53. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020b), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., Int. J., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  54. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, Int. J., 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  55. Karami, B. and Karami, S. (2019), "Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials", Adv. Nano Res., Int. J., 7(1), 51-61. https://doi.org/10.12989/anr.2019.7.1.051.
  56. Karlicic, D., Adhikari, S., Murmu, T. and Cajic, M. (2014), "Exact closed-form solution for nonlocal vibration and biaxial buckling of bonded multi-nanoplate system", Compos. B Eng., 66, 328-339. https://doi.org/10.1016/j.compositesb.2014.05.029.
  57. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1
  58. Lee, C.Y. and Kim, J.H. (2013), "Hygrothermal postbuckling behavior of functionally graded plates". Compos. Struct., 95, 278-282. https://doi.org/10.1007/s00366-019-00732-1.
  59. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2016), "Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method", Compos. B Eng., 84, 211-221. https://doi.org/10.1016/j.compositesb.2015.08.081.
  60. Malekzadeh, P. and Shojaee, M. (2015), "A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates", J. Vib. Control., 21(14), 2755-2772. https://doi.org/10.1177/1077546313516667.
  61. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E. A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., Int. J., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  62. Pasternak, P.L. (1954), "Fundamentals of a new method of analyzing structures on an elastic foundation by means of two foundation moduli", Proceedings of the Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture, Moscow, Russia.
  63. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, Int. J., 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  64. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., Int. J., 7(2), 89-98. http://dx.doi.org/10.12989/anr.2019.7.2.089.
  65. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Wall. Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  66. Singh, S.J. and Harsha, S.P. (2020), "Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach", Thin-Wall. Struct., 150, 106668. https://doi.org/10.1016/j.tws.2020.106668.
  67. Singh, S.J. and Harsha, S.P. (2019), "Nonlinear dynamic analysis of sandwich S-FGM plate resting on pasternak foundation under thermal environment", Eur. J. Mech. A Solids, 76, 155-179. https://doi.org/10.1016/j.euromechsol.2019.04.005.
  68. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020), "Nonlocal orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, Int. J., 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  69. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., AlZahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34 (4), 511-524. http://dx.doi.org/10.12989/scs.2020.34.4.511.
  70. Winkler, E. (1867), Theory of Elasticity and Strength, Dominicus Prague, Czechoslovakia.
  71. Yang, J. and Shen, H.S. (2002), "Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments", J. Sound Vib., 255(3), 579-602. https://doi.org/10.1006/jsvi.2001.4161.
  72. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, Int. J., 26(1), 63-74. https://doi.org/10.12989/cac.2020.26.1.063.