DOI QR코드

DOI QR Code

A GRADED MINIMAL FREE RESOLUTION OF THE m-TH ORDER SYMBOLIC POWER OF A STAR CONFIGURATION IN ℙn

  • Park, Jung Pil (Faculty of Liberal Education Seoul National University) ;
  • Shin, Yong-Su (Department of Mathematics Sungshin Women's University)
  • Received : 2019.11.05
  • Accepted : 2020.12.09
  • Published : 2021.03.01

Abstract

In [30] the author finds a graded minimal free resolution of the 2-nd order symbolic power of a star configuration in ℙn of any codimension r. In this paper, we find that of any m-th order symbolic power of a star configuration in ℙn of codimension 2, which generalizes the result of Galetto, Geramita, Shin, and Van Tuyl in [15, Theorem 5.3]. Furthermore, we extend it to the m-th order symbolic power of a star configuration in ℙn of any codimension r for m = 3, 4, which also generalizes the result of Biermann et al. in [1, Corollaries 4.6 and 5.7]. We also suggest how to find a graded minimal free resolution of the m-th order symbolic power of a star configuration in ℙn of any codimension r for m ≥ 5.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program of the NRF (Korea) under grant No.2019R1F1A1056934.

References

  1. J. Biermann, H. de Alba, F. Galetto, S. Murai, U. Nagel, A. O'Keefe, T. Romer, and A. Seceleanu, Betti numbers of symmetric shifted ideals, J. Algebra 560 (2020), 312-342. https://doi.org/10.1016/j.jalgebra.2020.04.037
  2. C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl, and T. Vu, The Waldschmidt constant for squarefree monomial ideals, J. Algebraic Combin. 44 (2016), no. 4, 875-904. https://doi.org/10.1007/s10801-016-0693-7
  3. C. Bocci and B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geom. 19 (2010), no. 3, 399-417. https://doi.org/10.1090/S1056-3911-09-00530-X
  4. C. Bocci and B. Harbourne, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138 (2010), no. 4, 1175-1190. https://doi.org/10.1090/S0002-9939-09-10108-9
  5. E. Carlini, E. Guardo, and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20. https://doi.org/10.1016/j.jalgebra.2014.02.013
  6. E. Carlini and A. Van Tuyl, Star configuration points and generic plane curves, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4181-4192. https://doi.org/10.1090/S0002-9939-2011-11204-8
  7. M. V. Catalisano, A. V. Geramita, A. Gimigliano, B. Harbourne, J. Migliore, U. Nagel, and Y. S. Shin, Secant varieties of the varieties of reducible hypersurfaces in ℙn, J. Algebra 528 (2019), 381-438. https://doi.org/10.1016/j.jalgebra.2019.03.014
  8. M. V. Catalisano, A. V. Geramita, A. Gimigliano, and Y. S. Shin, The secant line variety to the varieties of reducible plane curves, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 423-443. https://doi.org/10.1007/s10231-014-0470-y
  9. M. V. Catalisano, E. Guardo, and Y. S. Shin, The Waldschmidt constant of special k-configurations in ℙn, J. Pure Appl. Algebra 224 (2020), no. 10, 106341, 28 pp. https://doi.org/10.1016/j.jpaa.2020.106341
  10. S. Cooper, B. Harbourne, and Z. Teitler, Combinatorial bounds on Hilbert functions of fat points in projective space, J. Pure Appl. Algebra 215 (2011), no. 9, 2165-2179. https://doi.org/10.1016/j.jpaa.2010.12.006
  11. M. DiPasquale, C. A. Francisco, J. Mermin, and J. Schweig, Asymptotic resurgence via integral closures, Trans. Amer. Math. Soc. 372 (2019), no. 9, 6655-6676. https://doi.org/10.1090/tran/7835
  12. M. Dumnicki, B. Harbourne, T. Szemberg, and H. Tutaj-Gasinska, Linear subspaces, symbolic powers and Nagata type conjectures, Adv. Math. 252 (2014), 471-491. https://doi.org/10.1016/j.aim.2013.10.029
  13. L. Ein, R. Lazarsfeld, and K. E. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), no. 2, 241-252. https://doi.org/10.1007/s002220100121
  14. S. Franceschini and A. Lorenzini, Fat points of ℙn whose support is contained in a linear proper subspace, J. Pure Appl. Algebra 160 (2001), no. 2-3, 169-182. https://doi.org/10.1016/S0022-4049(00)00084-0
  15. F. Galetto, A. V. Geramita, Y. S. Shin, and A. Van Tuyl, The symbolic defect of an ideal, J. Pure Appl. Algebra 223 (2019), no. 6, 2709-2731. https://doi.org/10.1016/j.jpaa.2018.11.019
  16. F. Galetto, Y. S. Shin, and A. Van Tuyl, Distinguishing k-configurations, Illinois J. Math. 61 (2017), no. 3-4, 415-441. https://projecteuclid.org/euclid.ijm/1534924834 https://doi.org/10.1215/ijm/1534924834
  17. A. V. Geramita, B. Harbourne, and J. Migliore, Star configurations in ℙn, J. Algebra 376 (2013), 279-299. https://doi.org/10.1016/j.jalgebra.2012.11.034
  18. A. V. Geramita, B. Harbourne, J. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7049-7066. https://doi.org/10.1090/tran/6874
  19. A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in ℙ2, J. Algebra 298 (2006), no. 2, 563-611. https://doi.org/10.1016/j.jalgebra.2006.01.035
  20. E. Guardo and A. Van Tuyl, Powers of complete intersections: graded Betti numbers and applications, Illinois J. Math. 49 (2005), no. 1, 265-279. http://projecteuclid.org/euclid.ijm/1258138318 https://doi.org/10.1215/ijm/1258138318
  21. B. Harbourne, The ideal generation problem for fat points, J. Pure Appl. Algebra 145 (2000), no. 2, 165-182. https://doi.org/10.1016/S0022-4049(98)00077-2
  22. B. Harbourne and C. Huneke, Are symbolic powers highly evolved?, J. Ramanujan Math. Soc. 28A (2013), 247-266.
  23. J. Herzog and Y. Takayama, Resolutions by mapping cones, Homology Homotopy Appl. 4 (2002), no. 2, part 2, 277-294. https://doi.org/10.4310/hha.2002.v4.n2.a13
  24. M. Hochster and C. Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147 (2002), no. 2, 349-369. https://doi.org/10.1007/s002220100176
  25. M. Lampa-Baczynska and G. Malara, On the containment hierarchy for simplicial ideals, J. Pure Appl. Algebra 219 (2015), no. 12, 5402-5412. https://doi.org/10.1016/j.jpaa.2015.05.022
  26. M. Mosakhani and H. Haghighi, On the configurations of points in ℙ2 with the Waldschmidt constant equal to two, J. Pure Appl. Algebra 220 (2016), no. 12, 3821-3825. https://doi.org/10.1016/j.jpaa.2016.05.014
  27. J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in ℙn, J. Pure Appl. Algebra 219 (2015), no. 6, 2124-2133. https://doi.org/10.1016/j.jpaa.2014.07.026
  28. Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp. https://doi.org/10.1142/S0219498812501095
  29. Y. S. Shin, Star-configurations in ℙ2 having generic Hilbert function and the weak Lefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242. https://doi.org/10.1080/00927872.2012.656783
  30. Y. S. Shin, A graded minimal free resolution of the 2nd order symbolic power of the ideal of a star configuration in ℙn, J. Korean Math. Soc. 56 (2019), no. 1, 169-181. https://doi.org/10.4134/JKMS.j180119
  31. O. Zariski and P. Samuel, Commutative Algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, NJ, 1960.