Research for Mechanical Properties of Wet Nonwoven Fabric Based on Recycled Carbon Fiber Using Cellulose Nanofibrils

셀룰로스 나노피브릴을 이용한 재활용 탄소섬유 습식부직포의 기계적 물성 연구

  • Youn, Chulmin (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Bae, Young Hwan (Advanced Textile R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Woo Sik (Fibrous Ceramics & Aerospace Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Sang Young (Advanced Textile R&D Department, Korea Institute of Industrial Technology)
  • 윤철민 (한국생산기술연구원 섬유융합연구부문) ;
  • 배영환 (한국생산기술연구원 섬유융합연구부문) ;
  • 김우식 (한국세라믹연구원 세라믹섬유.항공소재센터) ;
  • 여상영 (한국생산기술연구원 섬유융합연구부문)
  • Received : 2021.01.29
  • Accepted : 2021.02.17
  • Published : 2021.02.28


Carbon fiber is an advanced material widely used in high-tech industries because of its light weight, heat resistance, chemical resistance, excellent mechanical properties, and electrical and thermal conductivity. However, carbon fibers also have high production costs and limited disposal methods (e.g., landfills). Research is being conducted to address these problems through the recycling of carbon fibers. Among the representative recycled carbon fiber products, wet nonwoven fabrics have limitations in their mechanical properties because their structure simply consists of stacked microsized-diameter carbon fibers and a binder. In this study, the tensile strength was improved by adding cellulose nanofibrils (CNFs) during the manufacturing of wet nonwoven fabrics by mixing short-cut carbon fibers and a binder (short-cut PVA fibers). CNF bundles improve the mechanical properties by forming a complex structure via the crosslinking of carbon fibers and short PVA fibers. The tensile strength of nonwoven fabrics consisting of short carbon fibers and PVA fibers was determined to be 92 gf. On the other hand, the tensile strength of the nonwoven fabric with 10% CNF added to the binder increased by approximately 20 times to 1,808 gf. The composite with nanofiber was confirmed to be effective in forming a structure with high mechanical properties when fabricating microfiber-based nonwoven fabrics.



  1. H. G. Chae, B. A. Newcomb, P. V. Gulgunje, Y. Liu, K. K. Gupta, M. G. Kamath, K. M. Lyons, S. Ghoshal, C. Pramanik, and L. Giannuzzi, "High Strength and High Modulus Carbon Fibers", Carbon, 2015, 93, 81-87.
  2. B. A. Newcomb, "Processing, Structure, and Properties of Carbon Fibers", Compos. Part A Appl. Sci. Manuf., 2016, 91, 262-282.
  3. J. D. Buckley and D. D. Edie, "Carbon-carbon Materials and Composites", William Andrew, 1993.
  4. K. Naito, Y. Tanaka, J. M. Yang, and Y. Kagawa, "Flexural Properties of PAN‐and Pitch‐based Carbon Fibers", J. Am. Ceram. Soc., 2009, 92, 186-192.
  5. X. Xi and D. Chung, "Colossal Electric Permittivity Discovered in Polyacrylonitrile (PAN) Based Carbon Fiber, with Comparison of PAN-based and Pitch-based Carbon Fibers", Carbon, 2019, 145, 734-739.
  6. Y. Huang and R. Young, "Effect of Fibre Microstructure Upon the Modulus of PAN-and Pitch-based Carbon Fibres", Carbon, 1995, 33, 97-107.
  7. O. Paris, D. Loidl, and H. Peterlik, "Texture of PAN-and Pitch-based Carbon Fibers", Carbon, 2002, 40, 551-555.
  8. S. Bennett, D. Johnson, and W. Johnson, "Strength-structure Relationships in PAN-based Carbon Fibres", J. Mater. Sci., 1983, 18, 3337-3347.
  9. G. Jiang, S. J. Pickering, E. H. Lester, T. Turner, K. Wong, and N. Warrior, "Characterisation of Carbon Fibres Recycled from Carbon Fibre/epoxy Resin Composites Using Supercritical npropanol", Compos. Sci. Technol., 2009, 69, 192-198.
  10. W. Liu, H. Huang, H. Cheng, and Z. Liu, "CFRP Reclamation and Remanufacturing Based on a Closed-loop Recycling Process for Carbon Fibers Using Supercritical N-butanol", Fiber. Polym., 2020, 21, 604-618.
  11. L. Altay, M. Atagur, O. Akyuz, Y. Seki, I. Sen, M. Sarikanat, and K. Sever, "Manufacturing of Recycled Carbon Fiber Reinforced Polypropylene Composites by High Speed Thermo‐kinetic Mixing for Lightweight Applications", Polym. Compos., 2018, 39, 3656-3665.
  12. H. Ueda, A. Moriyama, H. Iwahashi, and H. Moritomi, "Organizational Issues for Disseminating Recycling Technologies of Carbon Fiber-reinforced Plastics in the Japanese Industrial Landscape", J. Mater. Cycles Waste Manag., 2020, pp.1-11.
  13. H. Lee, C.-W. Choi, J.-W. Jin, M. Huh, S. Lee, and K.-W. Kang, "Homogenization-based Multiscale Analysis for Equivalent Mechanical Properties of Nonwoven Carbon-fiber Fabric Composites", J. Mech. Sci. Technol., 2019, 33, 4761-4770.
  14. M. Chaudhry, A. Czekanski, and Z. Zhu, "Characterization of Carbon Nanotube Enhanced Interlaminar Fracture Toughness of Woven Carbon Fiber Reinforced Polymer Composites", Int. J. Mech. Sci., 2017, 131, 480-489.
  15. H. J. Choi, Y. H. Bae, H. H. Lee, and S. Y. Yeo, "Preparation and Characterization of Alginate-gelatin/silk Wet-laid Nonwoven Fabric", Textile Coloration and Finishing, 2020, 32, 57-64.
  16. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, "Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites", Chem. Soc. Rev., 2011, 40, 3941-3994.
  17. H. Lee, S. B. A. Hamid, and S. Zain, "Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process", Sci. World J., 2014, 2014, 631013 .
  18. Y. Xue, Z. Mou, and H. Xiao, "Nanocellulose as a Sustainable Biomass Material: Structure, Properties, Present Status and Future Prospects in Biomedical Applications", Nanoscale, 2017, 9, 14758-14781.
  19. C. Chen, H. Wang, S. Li, L. Fang, and D. Li, "Reinforcement of Cellulose Nanofibers in Polyacrylamide Gels", Cellulose, 2017, 24, 5487-5493.
  20. J. Zhang, T. Liu, Z. Liu, and Q. Wang, "Facile Fabrication of Tough Photocrosslinked Polyvinyl Alcohol Hydrogels with Cellulose Nanofibrils Reinforcement", Polymer, 2019, 173, 103-109.
  21. J. Peng, T. Ellingham, R. Sabo, L.-S. Turng, and C. M. Clemons, "Short Cellulose Nanofibrils as Reinforcement in Polyvinyl Alcohol Fiber", Cellulose, 2014, 21, 4287-4298.
  22. J. Yang, C.-R. Han, X.-M. Zhang, F. Xu, and R.-C. Sun, "Cellulose Nanocrystals Mechanical Reinforcement in Composite Hydrogels with Multiple Cross-links: Correlations Between Dissipation Properties and Deformation Mechanisms", Macromolecules, 2014, 47, 4077-4086.
  23. D. Liu, X. Sun, H. Tian, S. Maiti, and Z. Ma, "Effects of Cellulose Nanofibrils on the Structure and Properties on PVA Nanocomposites", Cellulose, 2013, 20, 2981-2989.
  24. T. Wang and L. T. Drzal, "Cellulose-nanofiber-reinforced Poly (lactic acid) Composites Prepared by a Water-based Approach", ACS Appl. Mater. Interfaces, 2012, 4, 5079-5085.
  25. S.-H. Lee, Y. Teramoto, and T. Endo, "Cellulose Nanofiber-reinforced Polycaprolactone/polypropylene Hybrid Nanocomposite", Compos. Part A Appl. Sci. Manuf., 2011, 42, 151-156.
  26. F. Safdari, P. J. Carreau, M. C. Heuzey, M. R. Kamal, and M. M. Sain, "Enhanced Properties of Poly(ethylene oxide)/cellulose Nanofiber Biocomposites", Cellulose 2017, 24, 755-767.
  27. E. Barnes, J. A. Jefcoat, E. M. Alberts, M. A. McKechnie, H. R. Peel, J. P. Buchanan, C. A. Weiss Jr, K. L. Klaus, L. C. Mimun, and C. M. Warner, "Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites", Polymers, 2019, 11, 1091.
  28. A. Mandal and D. Chakrabarty, "Isolation of Nanocellulose from Waste Sugarcane Bagasse (SCB) and Its Characterization", Carbohydr. Polym., 2011, 86, 1291-1299.
  29. J. I. Moran, V. A. Alvarez, V. P. Cyras, and A. Vazquez, "Extraction of Cellulose and Preparation of Nanocellulose from Sisal Fibers", Cellulose, 2008, 15, 149-159.
  30. Y.-C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, and G. W. Huber, "Kinetics and Mechanism of Cellulose Pyrolysis", J. Phys. Chem. C, 2009, 113, 20097-20107.