위성기반 증발산 자료를 활용한 유역모델 성능 평가

  • 이상철 (서울시립대학교 환경공학부)
  • Published : 2021.12.30

Abstract

Keywords

Acknowledgement

이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2021R1C1C1006030).

References

  1. Anderson, M.C., Norman, J.M., Diak, G.R., Kustas, W.P., Mecikalski, J.R., A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 1997, 60, 195-216, doi:10.1016/S0034-4257(96)00215-5.
  2. Anderson, M.C., Norman, J.M., Mecikalski, J.R., Torn, R.D., Kustas, W.P., Basara, J.B., 2004. A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales. J. Hydrometeorol. 5, 343-363. https://doi.org/10.1175/1525-7541(2004)005<0343:AMRSMF>2.0.CO;2
  3. Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., Kustas, W.P., A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. Atmos. 2007, 112, D10117, doi:10.1029/2006JD007506.
  4. Becker, R., Koppa, A., Schulz, S., Usman, M., aus der Beek, T., Schuth, C., 2019. Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data. J. Hydrol. 577, 123944. https://doi.org/10.1016/j.jhydrol.2019.123944
  5. Cha, Y., Shin, J., Kim, Y., 2020. Data-Driven Modeling of Freshwater Aquatic Systems: Status and Prospects. J. Korean Soc. Water Environ. 36(6), 611-620. https://doi.org/10.15681/KSWE.2020.36.6.611
  6. Edwards, P.J., Williard, K.W.J., Schoonover, J.E., 2015. Fundamentals of Watershed Hydrology. J. Contemp. Water Res. Educ. 154, 3-20. https://doi.org/10.1111/j.1936-704x.2015.03185.x
  7. Gupta, H. V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 377, 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  8. Herman, M.R., Nejadhashemi, A.P., Abouali, M., Hernandez-Suarez, J.S., Daneshvar, F., Zhang, Z., Anderson, M.C., Sadeghi, A.M., Hain, C.R., Sharifi, A., 2018. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. J. Hydrol. 556, 39-49. https://doi.org/10.1016/j.jhydrol.2017.11.009
  9. Lee, S., Qi, J., Kim, H., McCarty, G.W., Moglen, G.E., Anderson, M., Zhang, X., Du, L., 2021. Utility of remotely sensed evapotranspiration products to assess an improved model structure. Sustain. 13, 2375. https://doi.org/10.3390/su13042375
  10. Neitsch, S.., Arnold, J.., Kiniry, J.., Williams, J.., 2011. Soil & Water Assessment Tool Theoretical Documentation Version 2009, Texas Water Resources Institute. https://doi.org/10.1016/j.scitotenv.2015.11.063
  11. Qi, J., Zhang, X., McCarty, G.W., Sadeghi, A.M., Cosh, M.H., Zeng, X., Gao, F., Daughtry, C.S.T., Huang, C., Lang, M.W., Arnold, J.G., 2018. Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessment Tool. Environ. Model. Softw. 109, 329-341. https://doi.org/10.1016/j.envsoft.2018.08.024
  12. Yen, H., White, M.J., Ascough, J.C., Smith, D.R., Arnold, J.G., 2016. Augmenting Watershed Model Calibration with Incorporation of Ancillary Data Sources and Qualitative Soft Data Sources. J. Am. Water Resour. Assoc. 52, 788-798. https://doi.org/10.1111/1752-1688.12428