Acknowledgement
This work was supported by grants from the National Research Foundation of Korea funded by the Korean government (2018R1A2B6007576), the National Institutes of Health (HL-20948), and the Leducq Foundation (5200829301). The authors thank Sijeong Bae (Department of Molecular Medicine, Inha University College of Medicine) Angel Loza Valdes, Ajit Kumar Koduri, Tuyet Dang, Judith Sanchez, Norma Anderson, and Lisa Beatty (Department of Molecular Genetics, UT Southwestern Medical Center), and Abhijit Bugde (the Live Cell Imaging Core Facility, UT Southwestern Medical Center) for their technical assistance. The authors also thank Dr. Youngah Jo for providing the anti-HMG CoA-R antibody and Dr. Jay Horton for scientific advice.
References
- Acton, S., Rigotti, A., Landschulz, K.T., Xu, S., Hobbs, H.H., and Krieger, M. (1996). Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518-520. https://doi.org/10.1126/science.271.5248.518
- Angulo, P. (2002). Nonalcoholic fatty liver disease. N. Engl. J. Med. 346, 1221-1231. https://doi.org/10.1056/NEJMra011775
- Anstee, Q.M., Targher, G., and Day, C.P. (2013). Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330-344. https://doi.org/10.1038/nrgastro.2013.41
- Browning, J.D., Szczepaniak, L.S., Dobbins, R., Nuremberg, P., Horton, J.D., Cohen, J.C., Grundy, S.M., and Hobbs, H.H. (2004). Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40, 1387-1395. https://doi.org/10.1002/hep.20466
- Brundert, M., Heeren, J., Merkel, M., Carambia, A., Herkel, J., Groitl, P., Dobner, T., Ramakrishnan, R., Moore, K.J., and Rinninger, F. (2011). Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J. Lipid Res. 52, 745-758. https://doi.org/10.1194/jlr.M011981
- Chatrath, H., Vuppalanchi, R., and Chalasani, N. (2012). Dyslipidemia in patients with nonalcoholic fatty liver disease. Semin. Liver Dis. 32, 22-29. https://doi.org/10.1055/s-0032-1306423
- Chong, M.F.F., Fielding, B.A., and Frayn, K.N. (2007). Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc. Nutr. Soc. 66, 52-59. https://doi.org/10.1017/S0029665107005290
- Cohen, D.E. and Fisher, E.A. (2013). Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Semin. Liver Dis. 33, 380-388. https://doi.org/10.1055/s-0033-1358519
- Cohen, J.C., Horton, J.D., and Hobbs, H.H. (2011). Human fatty liver disease: old questions and new insights. Science 332, 1519-1523. https://doi.org/10.1126/science.1204265
- Connelly, M.A. and Williams, D.L. (2004). Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids. Curr. Opin. Lipidol. 15, 287-295. https://doi.org/10.1097/00041433-200406000-00008
- DeBose-Boyd, R.A. (2008). Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res. 18, 609-621. https://doi.org/10.1038/cr.2008.61
- Donnelly, K.L., Smith, C.I., Schwarzenberg, S.J., Jessurun, J., Boldt, M.D., and Parks, E.J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343-1351. https://doi.org/10.1172/JCI23621
- Endemann, G., Stanton, L.W., Madden, K.S., Bryant, C.M., White, R.T., and Protter, A.A. (1993). CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268, 11811-11816. https://doi.org/10.1016/S0021-9258(19)50272-1
- Engelking, L.J., Kuriyama, H., Hammer, R.E., Horton, J.D., Brown, M.S., Goldstein, J.L., and Liang, G. (2004). Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulinstimulated lipogenesis. J. Clin. Invest. 113, 1168-1175. https://doi.org/10.1172/JCI20978
- Febbraio, M. and Silverstein, R.L. (2007). CD36: implications in cardiovascular disease. Int. J. Biochem. Cell Biol. 39, 2012-2030. https://doi.org/10.1016/j.biocel.2007.03.012
- Gerloff, T., Stieger, B., Hagenbuch, B., Madon, J., Landmann, L., Roth, J., Hofmann, A.F., and Meier, P.J. (1998). The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 273, 10046-10050. https://doi.org/10.1074/jbc.273.16.10046
- Goldstein, J.L., Basu, S.K., and Brown, M.S. (1983). Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 98, 241-260. https://doi.org/10.1016/0076-6879(83)98152-1
- Hellerstein, M.K. and Parks, E.J. (2000). Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am. J. Clin. Nutr. 71, 412-433. https://doi.org/10.1093/ajcn/71.2.412
- Horton, J.D., Cohen, J.C., and Hobbs, H.H. (2009). PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50 Suppl, S172-S177. https://doi.org/10.1194/jlr.R800091-JLR200
- Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002). SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131. https://doi.org/10.1172/JCI15593
- Horton, J.D., Shah, N.A., Warrington, J.A., Anderson, N.N., Park, S.W., Brown, M.S., and Goldstein, J.L. (2003). Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. U. S. A. 100, 12027-12032. https://doi.org/10.1073/pnas.1534923100
- Horton, J.D., Shimano, H., Hamilton, R.L., Brown, M.S., and Goldstein, J.L. (1999). Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. J. Clin. Invest. 103, 1067-1076. https://doi.org/10.1172/JCI6246
- Horton, J.D. and Shimomura, I. (1999). SREBPs: activators of cholesterol and fatty acid biosynthesis. Curr. Opin. Lipidol. 10, 143-150. https://doi.org/10.1097/00041433-199904000-00008
- Howard, B.V. (1987). Lipoprotein metabolism in diabetes mellitus. J. Lipid Res. 28, 613-628. https://doi.org/10.1016/S0022-2275(20)38659-4
- Hudgins, L.C., Hellerstein, M., Seidman, C., Neese, R., Diakun, J., and Hirsch, J. (1996). Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Invest. 97, 2081-2091. https://doi.org/10.1172/jci118645
- Ikonen, E. (2008). Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125-138. https://doi.org/10.1038/nrm2336
- Iritani, N., Nishimoto, N., Katsurada, A., and Fukuda, H. (1992). Regulation of hepatic lipogenic enzyme gene expression by diet quantity in rats fed a fat-free, high carbohydrate diet. J. Nutr. 122, 28-36. https://doi.org/10.1093/jn/122.1.28
- Johnson, B.M. and DeBose-Boyd, R.A. (2018). Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMGCoA reductase. Semin. Cell Dev. Biol. 81, 121-128. https://doi.org/10.1016/j.semcdb.2017.10.019
- Kim, C.W., Addy, C., Kusunoki, J., Anderson, N.N., Deja, S., Fu, X., Burgess, S.C., Li, C., Ruddy, M., Chakravarthy, M., et al. (2017). Acetyl-CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 394-406.e396. https://doi.org/10.1016/j.cmet.2017.07.009
- Kim, M.J., Choi, W.G., Ahn, K.J., Chae, I.G., Yu, R., and Back, S.H. (2020). Reduced EGFR level in eIF2 phosphorylation-deficient hepatocytes is responsible for susceptibility to oxidative stress. Mol. Cells 43, 264-275. https://doi.org/10.14348/molcells.2020.2197
- Kim, T.S. and Freake, H.C. (1996). High carbohydrate diet and starvation regulate lipogenic mRNA in rats in a tissue-specific manner. J. Nutr. 126, 611-617. https://doi.org/10.1093/jn/126.3.611
- Lambert, J.E., Ramos-Roman, M.A., Browning, J.D., and Parks, E.J. (2014). Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726-735. https://doi.org/10.1053/j.gastro.2013.11.049
- Makadia, S.S., Blaha, M., Keenan, T., Ndumele, C., Jones, S., DeFilippis, A., Martin, S., Kohli, P., Conceicao, R., Carvalho, J., et al. (2013). Relation of hepatic steatosis to atherogenic dyslipidemia. Am. J. Cardiol. 112, 1599-1604. https://doi.org/10.1016/j.amjcard.2013.08.001
- Matsuda, M., Korn, B.S., Hammer, R.E., Moon, Y.A., Komuro, R., Horton, J.D., Goldstein, J.L., Brown, M.S., and Shimomura, I. (2001). SREBP cleavageactivating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 15, 1206-1216. https://doi.org/10.1101/gad.891301
- May, C.L., Berger, J.M., Lespine, A., Pillot, B., Prieur, X., Letessier, E., Hussain, M.M., Collet, X., Cariou, B., and Costet, P. (2013). Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler. Thromb. Vasc. Biol. 33, 1484-1493. https://doi.org/10.1161/ATVBAHA.112.300263
- Moon, Y.A., Hammer, R.E., and Horton, J.D. (2009). Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J. Lipid Res. 50, 412-423. https://doi.org/10.1194/jlr.M800383-JLR200
- Moon, Y.A., Liang, G., Xie, X., Frank-Kamenetsky, M., Fitzgerald, K., Koteliansky, V., Brown, M.S., Goldstein, J.L., and Horton, J.D. (2012). The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 15, 240-246. https://doi.org/10.1016/j.cmet.2011.12.017
- Moon, Y.A., Ochoa, C.R., Mitsche, M.A., Hammer, R.E., and Horton, J.D. (2014). Deletion of ELOVL6 blocks the synthesis of oleic acid but does not prevent the development of fatty liver or insulin resistance. J. Lipid Res. 55, 2597-2605. https://doi.org/10.1194/jlr.M054353
- Okazaki, H., Goldstein, J.L., Brown, M.S., and Liang, G. (2010). LXR-SREBP1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J. Biol. Chem. 285, 6801-6810. https://doi.org/10.1074/jbc.M109.079459
- Rong, S., Cortes, V.A., Rashid, S., Anderson, N.N., McDonald, J.G., Liang, G., Moon, Y.A., Hammer, R.E., and Horton, J.D. (2017). Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice. eLife 6, e25015. https://doi.org/10.7554/elife.25015
- Sanders, F.W.B., Acharjee, A., Walker, C., Marney, L., Roberts, L.D., Imamura, F., Jenkins, B., Case, J., Ray, S., Virtue, S., et al. (2018). Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. Genome Biol. 19, 79. https://doi.org/10.1186/s13059-018-1439-8
- Semenkovich, C.F. (2006). Insulin resistance and atherosclerosis. J. Clin. Invest. 116, 1813-1822. https://doi.org/10.1172/JCI29024
- Shimano, H., Horton, J.D., Hammer, R.E., Shimomura, I., Brown, M.S., and Goldstein, J.L. (1996). Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP1a. J. Clin. Invest. 98, 1575-1584. https://doi.org/10.1172/JCI118951
- Shimomura, I., Shimano, H., Korn, B.S., Bashmakov, Y., and Horton, J.D. (1998). Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J. Biol. Chem. 273, 35299-35306. https://doi.org/10.1074/jbc.273.52.35299
- Sukonina, V., Lookene, A., Olivecrona, T., and Olivecrona, G. (2006). Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl. Acad. Sci. U. S. A. 103, 17450-17455. https://doi.org/10.1073/pnas.0604026103
- Targher, G., Day, C.P., and Bonora, E. (2010). Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 363, 1341-1350. https://doi.org/10.1056/NEJMra0912063
- Turley, S.D., Daggy, B.P., and Dietschy, J.M. (1996). Effect of feeding psyllium and cholestyramine in combination on low density lipoprotein metabolism and fecal bile acid excretion in hamsters with dietary-induced hypercholesterolemia. J. Cardiovasc. Pharmacol. 27, 71-79. https://doi.org/10.1097/00005344-199601000-00012
- Weigand, W., Hannappel, E., and Brand, K. (1980). Effect of starvation and refeeding a high-protein or high-carbohydrate diet on lipid composition and glycogen content of rat livers in relation to age. J. Nutr. 110, 669-674. https://doi.org/10.1093/jn/110.4.669
- Xie, C., Woollett, L.A., Turley, S.D., and Dietschy, J.M. (2002). Fatty acids differentially regulate hepatic cholesteryl ester formation and incorporation into lipoproteins in the liver of the mouse. J. Lipid Res. 43, 1508-1519. https://doi.org/10.1194/jlr.M200146-JLR200
- Yao, Z. and Wang, Y. (2012). Apolipoprotein C-III and hepatic triglyceriderich lipoprotein production. Curr. Opin. Lipidol. 23, 206-212. https://doi.org/10.1097/MOL.0b013e328352dc70
- Yazdanyar, A. and Jiang, X.C. (2012). Liver phospholipid transfer protein (PLTP) expression with a PLTP-null background promotes very low-density lipoprotein production in mice. Hepatology 56, 576-584. https://doi.org/10.1002/hep.25648
- Ye, J., Li, J.Z., Liu, Y., Li, X., Yang, T., Ma, X., Li, Q., Yao, Z., and Li, P. (2009). Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 9, 177-190. https://doi.org/10.1016/j.cmet.2008.12.013
- Yu, L., Hammer, R.E., Li-Hawkins, J., von Bergmann, K., Lutjohann, D., Cohen, J.C., and Hobbs, H.H. (2002). Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc. Natl. Acad. Sci. U. S. A. 99, 16237-16242. https://doi.org/10.1073/pnas.252582399
- Zhang, J., Zamani, M., Thiele, C., Taher, J., Alipour, M.A., Yao, Z., and Adeli, K. (2017). AUP1 (ancient ubiquitous protein 1) is a key determinant of hepatic very-low density lipoprotein assembly and secretion. Arterioscler. Thromb. Vasc. Biol. 37, 633-642. https://doi.org/10.1161/ATVBAHA.117.309000
- Zhang, R. (2012). Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem. Biophys. Res. Commun. 424, 786-792. https://doi.org/10.1016/j.bbrc.2012.07.038
Cited by
- Hypertriglyceridemia and Other Plasma Lipid Profile Abnormalities among People Living with Diabetes Mellitus in Ethiopia: A Systematic Review and Meta-Analysis vol.2021, 2021, https://doi.org/10.1155/2021/7389076