DOI QR코드

DOI QR Code

Single-Molecule Imaging Reveals the Mechanism Underlying Histone Loading of Schizosaccharomyces pombe AAA+ ATPase Abo1

  • Kang, Yujin (Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Cho, Carol (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Kyung Suk (Department of Physics Education, Kongju National University) ;
  • Song, Ji-Joon (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Ja Yil (Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2020.12.07
  • Accepted : 2021.02.09
  • Published : 2021.02.28

Abstract

Chromatin dynamics is essential for maintaining genomic integrity and regulating gene expression. Conserved bromodomain-containing AAA+ ATPases play important roles in nucleosome organization as histone chaperones. Recently, the high-resolution cryo-electron microscopy structures of Schizosaccharomyces pombe Abo1 revealed that it forms a hexameric ring and undergoes a conformational change upon ATP hydrolysis. In addition, single-molecule imaging demonstrated that Abo1 loads H3-H4 histones onto DNA in an ATP hydrolysis-dependent manner. However, the molecular mechanism by which Abo1 loads histones remains unknown. Here, we investigated the details concerning Abo1-mediated histone loading onto DNA and the Abo1-DNA interaction using single-molecule imaging techniques and biochemical assays. We show that Abo1 does not load H2A-H2B histones. Interestingly, Abo1 deposits multiple copies of H3-H4 histones as the DNA length increases and requires at least 80 bp DNA. Unexpectedly, Abo1 weakly binds DNA regardless of ATP, and neither histone nor DNA stimulates the ATP hydrolysis activity of Abo1. Based on our results, we propose an allosteric communication model in which the ATP hydrolysis of Abo1 changes the configuration of histones to facilitate their deposition onto DNA.

Keywords

Acknowledgement

This work was supported by the Samsung Science and Technology Foundation (SSTF-BA1901-13) to J.Y.L., the National Research Foundation (NRF-2020R1A2B5B01001792) to J.Y.L., (2020R1A2B5B03001517) to J.J.S., (2019R1A6A1A 10073887) to C.C., and (NRF-2019R1C1C1007124) to K.S.L.

References

  1. Cheon, N.Y., Kim, H.S., Yeo, J.E., Scharer, O.D., and Lee, J.Y. (2019). Singlemolecule visualization reveals the damage search mechanism for the human NER protein XPC-RAD23B. Nucleic Acids Res. 47, 8337-8347. https://doi.org/10.1093/nar/gkz629
  2. Cho, C., Jang, J., Kang, Y., Watanabe, H., Uchihashi, T., Kim, S.J., Kato, K., Lee, J.Y., and Song, J.J. (2019). Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone. Nat. Commun. 10, 5764. https://doi.org/10.1038/s41467-019-13743-9
  3. Dong, W., Oya, E., Zahedi, Y., Prasad, P., Svensson, J.P., Lennartsson, A., Ekwall, K., and Durand-Dubief, M. (2020). Abo1 is required for the H3K9me2 to h3K9me3 transition in heterochromatin. Sci. Rep. 10, 6055. https://doi.org/10.1038/s41598-020-63209-y
  4. Dyer, P.N., Edayathumangalam, R.S., White, C.L., Bao, Y., Chakravarthy, S., Muthurajan, U.M., and Luger, K. (2004). Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375, 23-44.
  5. Fierz, B. and Poirier, M.G. (2019). Biophysics of chromatin dynamics. Annu. Rev. Biophys. 48, 321-345. https://doi.org/10.1146/annurev-biophys-070317-032847
  6. Gal, C., Murton, H.E., Subramanian, L., Whale, A.J., Moore, K.M., Paszkiewicz, K., Codlin, S., Bähler, J., Creamer, K.M., Partridge, J.F., et al. (2016). Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation. EMBO Rep. 17, 79-93. https://doi.org/10.15252/embr.201540476
  7. Gradolatto, A., Rogers, R.S., Lavender, H., Taverna, S.D., Allis, C.D., Aitchison, J.D., and Tackett, A.J. (2008). Saccharomyces cerevisiae Yta7 regulates histone gene expression. Genetics 179, 291-304. https://doi.org/10.1534/genetics.107.086520
  8. Grover, P., Asa, J.S., and Campos, E.I. (2018). H3-H4 histone chaperone pathways. Annu. Rev. Genet. 52, 109-130. https://doi.org/10.1146/annurev-genet-120417-031547
  9. Gurard-Levin, Z.A., Quivy, J.P., and Almouzni, G. (2014). Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 83, 487-517. https://doi.org/10.1146/annurev-biochem-060713-035536
  10. Kim, D., Setiaputra, D., Jung, T., Chung, J., Leitner, A., Yoon, J., Aebersold, R., Hebert, H., Yip, C.K., and Song, J.J. (2016). Molecular architecture of yeast chromatin assembly factor 1. Sci. Rep. 6, 26702. https://doi.org/10.1038/srep26702
  11. Kim, K., Eom, J., and Jung, I. (2019). Characterization of structural variations in the context of 3D chromatin structure. Mol. Cells 42, 512-522. https://doi.org/10.14348/molcells.2019.0137
  12. Koo, S.J., Fernandez-Montalvan, A.E., Badock, V., Ott, C.J., Holton, S.J., von Ahsen, O., Toedling, J., Vittori, S., Bradner, J.E., and Gorjanacz, M. (2016). ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication. Oncotarget 7, 70323-70335. https://doi.org/10.18632/oncotarget.11855
  13. Lee, J.Y., Finkelstein, I.J., Crozat, E., Sherratt, D.J., and Greene, E.C. (2012). Single-molecule imaging of DNA curtains reveals mechanisms of KOPS sequence targeting by the DNA translocase FtsK. Proc. Natl. Acad. Sci. U. S. A. 109, 6531-6536. https://doi.org/10.1073/pnas.1201613109
  14. Liu, Y., Zhou, K., Zhang, N., Wei, H., Tan, Y.Z., Zhang, Z., Carragher, B., Potter, C.S., D'Arcy, S., and Luger, K. (2020). FACT caught in the act of manipulating the nucleosome. Nature 577, 426-431. https://doi.org/10.1038/s41586-019-1820-0
  15. Lloyd, J.T., Poplawaski, A., Lubula, M.Y., Carlson, S., Gay, J., and Glass, K.C. (2017). Biological function and histone recognition of family IV bromodomaincontaining proteins. FASEB J. 31 Suppl 1, 755.7.
  16. Lombardi, L.M., Davis, M.D., and Rine, J. (2015). Maintenance of nucleosomal balance in cis by conserved AAA-ATPase Yta7. Genetics 199, 105-116. https://doi.org/10.1534/genetics.114.168039
  17. Lowe, J., Ellonen, A., Allen, M.D., Atkinson, C., Sherratt, D.J., and Grainge, I. (2008). Molecular mechanism of sequence-directed DNA loading and translocation by FtsK. Mol. Cell 31, 498-509. https://doi.org/10.1016/j.molcel.2008.05.027
  18. Luger, K., Rechsteiner, T.J., and Richmond, T.J. (1999). Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1-16.
  19. Morozumi, Y., Boussouar, F., Tan, M., Chaikuad, A., Jamshidikia, M., Colak, G., He, H., Nie, L., Petosa, C., de Dieuleveult, M., et al. (2016). Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J. Mol. Cell Biol. 8, 349-362. https://doi.org/10.1093/jmcb/mjv060
  20. Peterson, C.L. and Almouzni, G. (2013). Nucleosome dynamics as modular systems that integrate DNA damage and repair. Cold Spring Harb. Perspect. Biol. 5, a012658. https://doi.org/10.1101/cshperspect.a012658
  21. Sauer, P.V., Gu, Y., Liu, W.H., Mattiroli, F., Panne, D., Luger, K., and Churchill, M.E. (2018). Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res. 46, 9907-9917. https://doi.org/10.1093/nar/gky823
  22. Shahnejat-Bushehri, S. and Ehrenhofer-Murray, A.E. (2020). The ATAD2/ANCCA homolog Yta7 cooperates with Scm3(HJURP) to deposit Cse4(CENP-A) at the centromere in yeast. Proc. Natl. Acad. Sci. U. S. A. 117, 5386-5393. https://doi.org/10.1073/pnas.1917814117
  23. Visnapuu, M.L., Fazio, T., Wind, S., and Greene, E.C. (2008). Parallel arrays of geometric nanowells for assembling curtains of DNA with controlled lateral dispersion. Langmuir 24, 11293-11299. https://doi.org/10.1021/la8017634
  24. Zhang, K., Gao, Y., Li, J., Burgess, R., Han, J., Liang, H., Zhang, Z., and Liu, Y. (2016). A DNA binding winged helix domain in CAF-1 functions with PCNA to stabilize CAF-1 at replication forks. Nucleic Acids Res. 44, 5083-5094. https://doi.org/10.1093/nar/gkw106
  25. Zhang, M.J., Zhang, C., Du, W., Yang, X., and Chen, Z. (2016). ATAD2 is overexpressed in gastric cancer and serves as an independent poor prognostic biomarker. Clin. Transl. Oncol. 18, 776-781. https://doi.org/10.1007/s12094-015-1430-8
  26. Zou, J.X., Revenko, A.S., Li, L.B., Gemo, A.T., and Chen, H.W. (2007). ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ER alpha, is required for coregulator occupancy and chromatin modification. Proc. Natl. Acad. Sci. U. S. A. 104, 18067-18072. https://doi.org/10.1073/pnas.0705814104