Acknowledgement
SAXS measurements were performed at the beamline 4C at the Pohang Accelerator Laboratory in Korea. We appreciate Dr. Eunha Hwang (Korea Basic Science Institute, Korea) for help with the SEC-MALS measurements and Dr. Jungwon Hwang and Dr. Myung Hee Kim (Korea Research Institute of Bioscience and Biotechnology, Korea) for help with the ITC measurements. This study was supported by the National Research Foundation of Korea (NRF_2020R1C1C1008451 and NRF_2019M3E5D6063955 to B.K., NRF_2017M3A9G5083321 to S.C.L., and NRF_2019R1C1C1002831 to E.W.L.) and the KRIBB Research Initiative Programs (to B.K.), which were funded by the Ministry of Science and ICT (MSIT) of Republic of Korea.
References
- Avvakumov, N., Torchia, J., and Mymryk, J.S. (2003). Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene 22, 3833-3841. https://doi.org/10.1038/sj.onc.1206562
- Berezutskaya, E. and Bagchi, S. (1997). The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J. Biol. Chem. 272, 30135-30140. https://doi.org/10.1074/jbc.272.48.30135
- Bodily, J.M., Mehta, K.P., and Laimins, L.A. (2011). Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 71, 1187-1195. https://doi.org/10.1158/0008-5472.CAN-10-2626
- Brehm, A., Nielsen, S.J., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1999). The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449-2458. https://doi.org/10.1093/emboj/18.9.2449
- Carlucci, A., Gedressi, C., Lignitto, L., Nezi, L., Villa-Moruzzi, E., Avvedimento, E.V., Gottesman, M., Garbi, C., and Feliciello, A. (2008). Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J. Biol. Chem. 283, 10919-10929. https://doi.org/10.1074/jbc.M707248200
- Carlucci, A., Porpora, M., Garbi, C., Galgani, M., Santoriello, M., Mascolo, M., di Lorenzo, D., Altieri, V., Quarto, M., Terracciano, L., et al. (2010). PTPD1 supports receptor stability and mitogenic signaling in bladder cancer cells. J. Biol. Chem. 285, 39260-39270. https://doi.org/10.1074/jbc.M110.174706
- Carra, G., Lingua, M.F., Maffeo, B., Taulli, R., and Morotti, A. (2020). P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa. Cell. Mol. Life Sci. 77, 4449-4458. https://doi.org/10.1007/s00018-020-03524-9
- Cho, Y.C., Kim, B.R., and Cho, S. (2017). Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes. BMB Rep. 50, 584-589. https://doi.org/10.5483/BMBRep.2017.50.11.169
- Hatterschide, J., Bohidar, A.E., Grace, M., Nulton, T.J., Kim, H.W., Windle, B., Morgan, I.M., Munger, K., and White, E.A. (2019). PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc. Natl. Acad. Sci. U. S. A. 116, 7033-7042. https://doi.org/10.1073/pnas.1819534116
- Huang, J.M., Nagatomo, I., Suzuki, E., Mizuno, T., Kumagai, T., Berezov, A., Zhang, H., Karlan, B., Greene, M.I., and Wang, Q. (2013). YAP modifies cancer cell sensitivity to EGFR and survivin inhibitors and is negatively regulated by the non-receptor type protein tyrosine phosphatase 14. Oncogene 32, 2220-2229. https://doi.org/10.1038/onc.2012.231
- Huh, K., Zhou, X., Hayakawa, H., Cho, J.Y., Libermann, T.A., Jin, J., Harper, J.W., and Munger, K. (2007). Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J. Virol. 81, 9737-9747. https://doi.org/10.1128/JVI.00881-07
- Jang, H., Park, S., Kim, J., Kim, J.H., Kim, S.Y., Cho, S., Park, S.G., Park, B.C., Kim, S., and Kim, J.H. (2020). The tumor suppressor, p53, negatively regulates non-canonical NF-κB signaling through miRNA-induced silencing of NF-κB-inducing kinase. Mol. Cells 43, 23-33. https://doi.org/10.14348/molcells.2019.0239
- Kim, K.W., Kim, J., Yun, Y.D., Ahn, H., Min, B., Kim, N.H., Rah, S., Kim, H.Y., Lee, C.S., Seo, I.D., et al. (2017). Small-angle X-ray scattering beamline BL4C SAXS at Pohang Light Source II. Biodesign 5, 24-29.
- Kobayashi, K., Hisamatsu, K., Suzui, N., Hara, A., Tomita, H., and Miyazaki, T. (2018). A review of HPV-related head and neck cancer. J. Clin. Med. 7, 241. https://doi.org/10.3390/jcm7090241
- Kozin, M.B. and Svergun, D.I. (2001). Automated matching of high-and low-resolution structural models. J. Appl. Crystallogr. 34, 33-41. https://doi.org/10.1107/S0021889800014126
- Lee, J.O., Russo, A.A., and Pavletich, N.P. (1998). Structure of the retinoblastoma tumour-suppressor pocket domain bound to a peptide from HPV E7. Nature 391, 859-865. https://doi.org/10.1038/36038
- Liu, X., Clements, A., Zhao, K., and Marmorstein, R. (2006). Structure of the human Papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J. Biol. Chem. 281, 578-586. https://doi.org/10.1074/jbc.M508455200
- Liu, X., Yang, N., Figel, S.A., Wilson, K.E., Morrison, C.D., Gelman, I.H., and Zhang, J. (2013). PTPN14 interacts with and negatively regulates the oncogenic function of YAP. Oncogene 32, 1266-1273. https://doi.org/10.1038/onc.2012.147
- Martinez-Zapien, D., Ruiz, F.X., Poirson, J., Mitschler, A., Ramirez, J., Forster, A., Cousido-Siah, A., Masson, M., Vande Pol, S., Podjarny, A., et al. (2016). Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 529, 541-545. https://doi.org/10.1038/nature16481
- Mello, S.S., Valente, L.J., Raj, N., Seoane, J.A., Flowers, B.M., McClendon, J., Bieging-Rolett, K.T., Lee, J., Ivanochko, D., Kozak, M.M., et al. (2017). A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-Yap axis in pancreatic cancer. Cancer Cell 32, 460-473. https://doi.org/10.1016/j.ccell.2017.09.007
- Michaloglou, C., Lehmann, W., Martin, T., Delaunay, C., Hueber, A., Barys, L., Niu, H., Billy, E., Wartmann, M., Ito, M., et al. (2013). The tyrosine phosphatase PTPN14 is a negative regulator of YAP activity. PLoS One 8, e61916. https://doi.org/10.1371/journal.pone.0061916
- Mittal, S. and Banks, L. (2017). Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. Rev. Mutat. Res. 772, 23-35. https://doi.org/10.1016/j.mrrev.2016.08.001
- Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., and Howley, P.M. (1989). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099-4105. https://doi.org/10.1002/j.1460-2075.1989.tb08594.x
- Munoz, N., Bosch, F.X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., Meijer, C.J., and International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348, 518-527. https://doi.org/10.1056/NEJMoa021641
- Ohlenschlager, O., Seiboth, T., Zengerling, H., Briese, L., Marchanka, A., Ramachandran, R., Baum, M., Korbas, M., Meyer-Klaucke, W., Durst, M., et al. (2006). Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7. Oncogene 25, 5953-5959. https://doi.org/10.1038/sj.onc.1209584
- Pal, S., Bhattacharjee, A., Ali, A., Mandal, N.C., Mandal, S.C., and Pal, M. (2014). Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J. Inflamm. 11, 23. https://doi.org/10.1186/1476-9255-11-23
- Plani-Lam, J.H., Chow, T.C., Fan, Y.H., Garcia-Bloj, B., Cheng, L., Jin, D.Y., Hancock, W., Fanayan, S., Ingley, E., and Song, Y.Q. (2016). High expression of PTPN21 in B-cell non-Hodgkin's gastric lymphoma, a positive mediator of STAT5 activity. Blood Cancer J. 6, e388. https://doi.org/10.1038/bcj.2015.107
- Poirson, J., Biquand, E., Straub, M.L., Cassonnet, P., Nomine, Y., Jones, L., van der Werf, S., Trave, G., Zanier, K., Jacob, Y., et al. (2017). Mapping the interactome of HPV E6 and E7 oncoproteins with the ubiquitinproteasome system. FEBS J. 284, 3171-3201. https://doi.org/10.1111/febs.14193
- Roda-Navarro, P. and Bastiaens, P.I. (2014). Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation. PLoS One 9, e103203. https://doi.org/10.1371/journal.pone.0103203
- Rozenblatt-Rosen, O., Deo, R.C., Padi, M., Adelmant, G., Calderwood, M.A., Rolland, T., Grace, M., Dricot, A., Askenazi, M., Tavares, M., et al. (2012). Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 487, 491-495. https://doi.org/10.1038/nature11288
- Schneider, G., Henrich, A., Greiner, G., Wolf, V., Lovas, A., Wieczorek, M., Wagner, T., Reichardt, S., von Werder, A., Schmid, R.M., et al. (2010). Cross talk between stimulated NF-κB and the tumor suppressor p53. Oncogene 29, 2795-2806. https://doi.org/10.1038/onc.2010.46
- Semenyuk, A.V. and Svergun, D.I. (1991). GNOM - a program package for small-angle scattering data processing. J. Appl. Crystallogr. 24, 537-540. https://doi.org/10.1107/S002188989100081X
- Svergun, D., Barberato, C., and Koch, M.H.J. (1995). CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768-773. https://doi.org/10.1107/S0021889895007047
- Svergun, D.I., Petoukhov, M.V., and Koch, M.H. (2001). Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946-2953. https://doi.org/10.1016/S0006-3495(01)76260-1
- Szalmas, A., Tomaic, V., Basukala, O., Massimi, P., Mittal, S., Konya, J., and Banks, L. (2017). The PTPN14 tumor suppressor is a degradation target of human papillomavirus E7. J. Virol. 91, e00057-17.
- Todorovic, B., Hung, K., Massimi, P., Avvakumov, N., Dick, F.A., Shaw, G.S., Banks, L., and Mymryk, J.S. (2012). Conserved region 3 of human papillomavirus 16 E7 contributes to deregulation of the retinoblastoma tumor suppressor. J. Virol. 86, 13313-13323. https://doi.org/10.1128/JVI.01637-12
- Tommasino, M. (2014). The human papillomavirus family and its role in carcinogenesis. Semin. Cancer Biol. 26, 13-21. https://doi.org/10.1016/j.semcancer.2013.11.002
- Tumban, E. (2019). A current update on human papillomavirus-associated head and neck cancers. Viruses 11, 922. https://doi.org/10.3390/v11100922
- Wang, X., Huang, X., and Zhang, Y. (2018). Involvement of human papillomaviruses in cervical cancer. Front. Microbiol. 9, 2896. https://doi.org/10.3389/fmicb.2018.02896
- Werness, B.A., Levine, A.J., and Howley, P.M. (1990). Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76-79. https://doi.org/10.1126/science.2157286
- White, E.A., Munger, K., and Howley, P.M. (2016). High-risk human papillomavirus E7 proteins target PTPN14 for degradation. mBio 7, e01530-16.
- White, E.A., Sowa, M.E., Tan, M.J., Jeudy, S., Hayes, S.D., Santha, S., Munger, K., Harper, J.W., and Howley, P.M. (2012). Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc. Natl. Acad. Sci. U. S. A. 109, E260-E267. https://doi.org/10.1073/pnas.1116776109
- Wilson, K.E., Li, Y.W., Yang, N., Shen, H., Orillion, A.R., and Zhang, J. (2014). PTPN14 forms a complex with Kibra and LATS1 proteins and negatively regulates the YAP oncogenic function. J. Biol. Chem. 289, 23693-23700. https://doi.org/10.1074/jbc.M113.534701
- Wu, Z.Z., Lu, H.P., and Chao, C.C. (2010). Identification and functional analysis of genes which confer resistance to cisplatin in tumor cells. Biochem. Pharmacol. 80, 262-276. https://doi.org/10.1016/j.bcp.2010.03.029
- Yun, H.Y., Kim, M.W., Lee, H.S., Kim, W., Shin, J.H., Kim, H., Shin, H.C., Park, H., Oh, B.H., Kim, W.K., et al. (2019). Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol. 17, e3000367. https://doi.org/10.1371/journal.pbio.3000367