참고문헌
- Altunisik, A.C. (2017), "Shaking table test of wooden building models for structural identification", Earthq. Struct., 12(1), 67-77. https://doi.org/10.12989/eas.2017.12.1.067.
- Anderson, E.N., Leichti, R.J., Sutt, E.G. and Rosowsky, D.V. (2007), "Sheathing nail bending-yield stress: effect on cyclic performance of wood shear walls", Wood Fiber Sci., 39(4), 536-547.
- ASTM (2010), Standard test methods for cyclic (reversed) load test for shear resistance of vertical elements of the lateral force resisting systems for buildings. E2126-10, West Conshohocken, PA.
- Ayoub, A. (2007), "Seismic analysis of wood building structures", Eng. Struct., 29(2), 213-223. https://doi.org/10.1016/j.engstruct.2006.04.011.
- Azizsoltani, H. and Haldar, A. (2020), "Intelligent computational schemes for designing more seismic damage-tolerant structures", J. Earthq. Eng., 24(2), 175-202. https://doi.org/10.1080/13632469.2017.1401566.
- Azizsoltani, H., Gaxiola-Camacho, J.R. and Haldar, A. (2018), "Site-specific seismic design of damage tolerant structural systems using a novel concept", Bull. Earthq. Eng., 16(9), 3819-3843. https://doi.org/10.1007/s10518-018-0329-5.
- Boore, D.M. (2003), "Simulation of ground motion using the stochastic method", Pure Appl. Geophy., 160(3-4), 635-676. https://doi.org/10.1007/PL00012553.
- Cornell, C.A. and Krawinkler, H. (2000), "Progress and challenges in seismic performance assessment", PEER Center News, 3(2), 1-3.
- Dolan, J.D. and Madsen, B. (1992), "Monotonic and cyclic nail connection tests", Canadian J. Civil Eng., 19(1), 97-104. https://doi.org/10.1139/l92-010.
- Durham, J., Lam, F. and Prion, H.G.L. (2001), "Seismic resistance of wood shear walls with large OSB panels", J. Struct. Eng., 127(12), 1460-1466. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1460).
- Falk, R.H. and Itani, R.Y. (1987), "Dynamic characteristics of wood and gypsum diaphragms", J. Struct. Eng., 113(6), 1357-1370. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:6(1357).
- FEMA356 (2000), Prestandard and commentary for the seismic rehabilitation of buildings, Rep. No. 356, Federal Emergency Management Agency, Washington D.C.
- Fischer, D. and Folz, B. (2001), "Shake table tests of a two-story wood frame house", CUREE Publication No. W-06, University of California, San Diego.
- Folz, B. and Filiatrault, A. (2001), "Cyclic analysis of wood shear walls", J. Struct. Eng., 127(4), 433-441. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(433).
- Folz, B. and Filiatrault, A. (2004), "Simplified seismic analysis of wood frame structures", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada.
- Gasparini, D. and Vanmarcke, E.H. (1976), SIMQKE: A program for artificial motion generation, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA.
- Gatto, K. and Uang, C. (2003), "Effects of loading protocol on the cyclic response of wood frame shearwalls", J. Struct. Eng., 129(1), 1384-1393. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1384).
- Gaxiola-Camacho, J.R., Azizsoltani, H., Villegas-Mercado, F.J. and Haldar, A. (2017), "A novel reliability technique for implementation of performance-based seismic design of structures", Eng. Struct., 142, 137-147. https://doi.org/10.1016/j.engstruct.2017.03.076.
- Ghosh, S. and Chakraborty, S. (2017a), "Probabilistic seismic hazard analysis and synthetic ground motion generation for seismic risk assessment of structures in the northeast india", Int. J. Geotech. Earthq. Eng., 8(2), 39-59. http://10.4018/IJGEE.2017070103.
- Ghosh, S. and Chakraborty, S. (2017b), "Seismic performance of reinforced concrete building in Guwahati city, northeast India", Scientia Iranica, 24(4), 1821-1833. https://dx.doi.org/10.24200/sci.2017.4273.
- Ghosh, S., Ghosh, S. and Chakraborty, S. (2017), "", Int. J. Advan. Eng. Sci. Appl. Mathem., 1-14. https://doi.org/10.1007/s12572-017-0200-y.
- Gu, J. (2016a), "Using numerical procedures to quantify seismic reliability of wood shear walls and braced frames", Advan. Struct. Eng., 19(9), 1472-1483. https://doi.org/10.1177%2F1369433216642079. https://doi.org/10.1177%2F1369433216642079
- Gu, J. (2016b), "Sensitivity analysis of probabilistic seismic behaviour of wood frame buildings", Earthq. Struct., 11(1), 109-127. https://doi.org/10.12989/eas.2016.11.1.109.
- Haldar, A. and Mahadevan, S. (2000), Reliability Assessment Using Stochastic Finite Element Analysis, John Wiley and Sons, NY.
- IS1893 (2002), Indian standard criteria for earthquake resistant design of structures. Part 1 - General Provisions and Buildings, Bureau of Indian Standards; New Delhi, India.
- IS883 (1994), Design of structural timber. Building-Code of Practice, Bureau of Indian Standards; New Delhi, India.
- Koliou, M. and Filiatrault, A. (2017). "Development of wood and steel diaphragm hysteretic connector database for performancebased earthquake engineering", Bull. Earthq. Eng., 15(10), 4319-4347. https://doi.org/10.1007/s10518-017-0141-7.
- Li, Y., Yin, Y., Ellingwood, B.R. and Bulleit, W.M. (2010), "Uniform hazard versus uniform risk bases for performance-based earthquake engineering of light-frame wood construction", Earthq. Eng. Struct. Dyn., 39(11), 1199-1217. https://doi.org/10.1002/eqe.989.
- Li, Z., He, M., Li, M. and Lam, F. (2014), "Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems", Earthq. Struct., 7(1), 101-117. https://doi.org/10.12989/eas.2014.7.1.101.
- Lu, D., Yu, X., Jia, M. and Wang, G. (2014), "Seismic risk assessment for a reinforced concrete frame designed according to Chinese codes", Struct. Infrastruct. Eng., 10(10), 1295-1310. https://doi.org/10.1080/15732479.2013.791326.
- Mandal, T.K., Ghosh, S. and Pujari, N.N. (2016), "Seismic fragility analysis of a typical Indian PHWR containment: comparison of fragility models", Struct. Safety, 58, 11-19. https://doi.org/10.1016/j.strusafe.2015.08.003.
- McKenna, F. (2011), "OpenSees: A framework for earthquake engineering simulation", Comput. Sci. Eng., 13(4), 58-66. https://doi.org/10.1109/MCSE.2011.66.
- Mercado, F.J.V., Azizsoltani, H., Gaxiola-Camacho, J.R. and Haldar, A. (2017), "Seismic reliability evaluation of structural systems for different soil conditions", Int. J. Geotech. Earthq. Eng. (IJGEE), 8(2), 23-38. http://10.4018/IJGEE.2017070102.
- Moustafa, A. and Mahadevan, S. (2011), "Reliability analysis of uncertain structures using earthquake response spectra", Earthq. Struct., 2(3), 279-295. https://doi.org/10.12989/eas.2011.2.3.279
- Olsson, A.M.J. and Sandberg, G.E. (2002), "Latin hypercube sampling for stochastic finite element analysis", J. Eng. Mech., 128(1), 121-125. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(121).
- Pang, W., Rosowsky, D.V., Ellingwood, B.R. and Wang, Y. (2009), "Seismic fragility analysis and retrofit of conventional residential wood-frame structures in the central United States", J. Struct. Eng., 135(3), 262-271. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:3(262).
- Peterson, J. (1983), "Bibliography on lumber and wood panel diaphragms", J. Struc. Eng., 109(12), 2838-2852. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:12(2838).
- Philips, T.L., Itani, R.Y. and McLean, D.I. (1993), "Lateral load sharing by diaphragms in wood-frame buildings", J. Struct. Eng., 119(5), 1556-1571. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:5(1556).
- Rosowsky, D.V. and Ellingwood, B.R. (2002), "Performancebased engineering of wood frame housing: fragility analysis methodology", J. Struct. Eng., 128, 32-38. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:1(32).
- Seaders, P., Miller, T.H. and Gupta, R. (2009), "Performance of partially and fully anchored wood-frame shear walls under earthquake loads", Forest Products J., 59(5), 42-52. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/6t053j193.
- Seim, W., Kramar, M., Pazlar, T. and Vogt, T. (2015), "OSB and GFB as sheathing materials for timber-framed shear walls: Comparative study of seismic resistance", J. Struct. Eng., 142(4), E4015004-1-14. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001293.
- Shinozuka, M., Feng, M.Q., Lee, J. and Naganuma, T. (2000), "Statistical analysis of fragility curves", J. Eng. Mech., 126(12), 1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224).
- Sinha, A. and Gupta, R. (2009), "Strain distribution in OSB and GWB in wood-frame shear walls", J. Struct. Eng., 135(6), 666-675. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:6(666).
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.
- Van de Lindt, J.W. (2005), "Damage-based seismic reliability concept for wood frame structures", J. Struct. Eng., 131(4), 668-675. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:4(668).
- Van de Lindt, J.W., Symans, M., Pang, W., Shao, X. and Gershfeld, M. (2012), "The NEES-soft project: Seismic risk reduction for soft-story wood frame buildings", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal.
- Xu, J. and Dolan, J.D. (2009a). "Development of a wood-frame shear wall model in ABAQUS", J. Struct. Eng., 135(8), 977-984. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000031.
- Xu, J. and Dolan, J.D. (2009b), "Development of nailed wood joint element in ABAQUS", J. Struct. Eng., 135(8), 968-976. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000030.
- Zhang, X. and Tannert, T. (2018), "Seismic reliability analysis of a timber steel hybrid system", Eng. Struct., 167, 629-638. https://doi.org/10.1016/j.engstruct.2018.04.051.