DOI QR코드

DOI QR Code

The effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions

  • Abbasi, Saeed (Department of Civil Engineering, Imam Khomeini International University) ;
  • Ardakani, Alireza (Department of Civil Engineering, Imam Khomeini International University) ;
  • Yakhchalian, Mansoor (Department of Civil Engineering, Imam Khomeini International University)
  • Received : 2019.09.14
  • Accepted : 2021.01.17
  • Published : 2021.01.25

Abstract

Ground motions recorded in near-fault sites, where the rupture propagates toward the site, are significantly different from those observed in far-fault regions. In this research, finite element modeling is used to investigate the effect of pile cap stiffness on the seismic response of soil-pile-structure systems under near-fault ground motions. The Von Wolffersdorff hypoplastic model with the intergranular strain concept is applied for modeling of granular soil (sand) and the behavior of structure is considered to be non-linear. Eight fault-normal near-field ground motion records, recorded on rock, are applied to the model. The numerical method developed is verified by comparing the results with an experimental test (shaking table test) for a soil-pile-structure system. The results, obtained from finite element modeling under near-fault ground motions, show that when the value of cap stiffness increases, the drift ratio of the structure decreases, whereas the pile relative displacement increases. Also, the residual deformations in the piles are due to the non-linear behavior of soil around the piles.

Keywords

References

  1. Alavi, B. and Krawinkler, H. (2004), "Behavior of moment-resisting frame structures subjected to near-fault ground motions", Earthq. Eng. Struct. Dyn., 33(6), 687-706. https://doi.org/10.1002/eqe.369.
  2. Anandarajah, A. and Zhang, J. (2000), "Simplified finite element modeling of nonlinear dynamic pile-soil interaction", Retrieved February, 10, 2005.
  3. Ansari, M. Safiey, A. and Abbasi, M. (2020), "Fragility based performance evaluation of mid rise reinforced concrete frames in near field and far field earthquakes", Struct. Eng. Mech., 76(6), 751. http://dx.doi.org/10.12989/scs.2020.76.6.751.
  4. Arnold, M. (2008), "Application of the Intergranular Strain Concept to the Hypoplastic Modelling of Non-Adhesive Interfaces", The 12th Int. Conference of IACMAG.
  5. Atefatdoost, G.R. JavidSharifi, B. and Shakib, H. (2018), "Effects of foundation flexibility on seismic demands of asymmetric buildings subject to near-fault ground motions", Struct. Eng. Mech., 66(5), 637-648. http://dx.doi.org/10.12989/sem.2018.66.5.637.
  6. Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc. Amer., 97(5), 1486-1501. https://doi.org/10.1785/0120060255.
  7. Bauer, E. (1996), "Calibration of a comperhensive hypoplastic model for granular materials", Soils Found., 36(1), 13-26. https://doi.org/10.3208/sandf.36.13.
  8. Bentley, K.J. and Naggar, M.H.E. (2000), "Numerical analysis of kinematic response of single piles", Canadian Geotech. J., 37(6), 1368-1382. https://doi.org/10.1139/t00-066.
  9. Bilotta, E. Lanzano, G. Madabhushi, S.P.G. and Silvestri, F. (2014), "A numerical round robin on tunnels under seismic actions", Acta Geotech., 9, 563-579. https://doi.org/10.1007/s11440-014-0330-3.
  10. Bowles, J.E. (1982), Foundation design and analysis, McGraw-Hill, New York.
  11. Bradley, B.A. Cubrinovski, M. Dhakal, R.P. and MacRae, G.A. (2009), "Intensity measures for the seismic response of pile foundations", Soil Dyn. Earthq. Eng., 29(6), 1046-1058. https://doi.org/10.1016/j.soildyn.2008.12.002.
  12. Bray, J.D. and Rodriguez-Marek, A. (2004), "Characterization of forward-directivity ground motions in the near-fault region", Soil Dyn. Earthq. Eng., 24(11), 815-828. https://doi.org/10.1016/j.soildyn.2004.05.001.
  13. Chang, Z. Liu, Z. Chen, Z. and Zhai, C. (2019), "Use of near-fault pulse-energy for estimating critical structural responses", Earthq. Struct., 16(4), 415-423. http://dx.doi.org/10.12989/eas.2019.16.4.415.
  14. Chau, K. Shen, C. and Guo, X. (2009), "Nonlinear seismic soil-pile-structure interactions: Shaking table tests and FEM analyses", Soil Dyn. Earthq. Eng., 29(2), 300-310. https://doi.org/10.1016/j.soildyn.2008.02.004.
  15. Chen, X. (1995), Near-field ground motion from the Landers earthquake, California Institute of Technology. https://resolver.caltech.edu/CaltechTHESIS:12012011110028500.
  16. Cui, C. Zhang, S. Chapman, D. and Meng, K. (2018), "Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads", Geomech. Eng., 15(2), 793-803. http://dx.doi.org/10.12989/gae.2018.15.2.793.
  17. Fleming, K. Weltman, A. Randolph, M. and Elson, K. (1985), Piling engineering, John Wiley and Sons, New York.
  18. Ghorbani, A, Hasanzadehshooiili, H, Ghamari, E. and Medzvieckas, J. (2014), "Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction", Soil Dyn. Earthq. Eng., 58, 21-36. https://doi.org/10.1016/j.soildyn.2013.12.001.
  19. Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soils Found., 36(1), 1-12. https://doi.org/10.3208/sandf.36.1.
  20. Hall, J.F. Heaton, T.H. Halling, M.W. and Wald, D.J. (1995), "Near-source ground motion and its effects on flexible buildings", Earthq. Spectra, 11(4), 569-605. https://doi.org/10.1193/1.1585828
  21. Herle, I. and Gudehus, G. (1999), "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mech. Cohesive-Frictional Mater., 4(5), 461-486. https://doi.org/10.1002/(SICI)10991484(199909)4:5<461::AIDCFM71>3.0.CO;2-P.
  22. Hokmabadi, A.S. Fatahi, B. and Samali, B. (2014), "Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations", Comput. Geotech., 55, 172-186. https://doi.org/10.1016/j.compgeo.2013.08.011.
  23. Hwang, T.H. Kim, K.H. and Shin, J.H. (2017), "Bearing capacity of micropiled-raft system", Struct. Eng. Mech., 63(3), 417-428. http://dx.doi.org/10.12989/sem.2017.63.3.417.
  24. Iervolino, I. Chioccarelli, E. and Baltzopoulos, G. (2012), "Inelastic displacement ratio of near-source pulse-like ground motions", Earthq. Eng. Struct. Dyn., 41(15), 2351-2357. https://doi.org/10.1002/eqe.2167.
  25. Kalkan, E. and Kunnath, S.K. (2006), "Effects of fling step and forward directivity on seismic response of buildings", Earthq. Spectra, 22(2), 367-390. https://doi.org/10.1193/1.2192560.
  26. Kolymbas, D. (1985), "A generalized hypoelastic constitutive law", Proceedings of XI International Conference Soil Mechanics and Foundation Engineering, AA Balkema, San Francisco.
  27. Kolymbas, D. (2000), "The misery of constitutive modelling. Constitutive Modelling of Granular Materials", Springer, 11-24.
  28. Kramer, S.L. (1996), "Geotechnical earthquake engineering", Prentice Hall.
  29. Kumar, M.P. Raju, P.M. Jasmine, G.V. and Aditya, M. (2020), "Settlement analysis of pile cap with normal and under-reamed piles", Comput. Concrete, 25(6), 525-535. http://dx.doi.org/10.12989/cac.2020.25.6.525.
  30. Lanzano, G. Bilotta, E. Russo, G. and Silvestri, F. (2014), "Experimental and numerical study on circular tunnels under seismic loading.", Europe. J. Environ. Civil Eng., 19, 539-563. https://doi.org/10.1080/19648189.2014.893211.
  31. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95(4), 859-878. https://doi.org/10.1061/JMCEA3.0001144
  32. Maheshwari, B. and Sarkar, R. (2011), "Seismic behavior of soilpile-structure interaction in liquefiable soils: Parametric study", Int. J. Geomech., 11(4). 335-347. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000087.
  33. Maheshwari, B., Truman, K, El Naggar, M. and Gould, P. (2004), "Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction", Soil Dyn. Earthq. Eng., 24(4), 343-356. https://doi.org/10.1016/j.soildyn.2004.01.001.
  34. Masin, D. (2019), "Modeling of soil behavior with Hypoplasticity: Another Approach to soil constitutive modeling", Springer Series in Geomechanics and Geoengineering.
  35. Matsumoto, T. Fukumura, K. Horikoshi, K. and Oki, A. (2004), "Shaking table tests on model piled rafts in sand considering influence of superstructures", Int. J. Phys. Modelling Geotech., 4(3), 21-38. https://doi.org/10.1680/ijpmg.2004.040302.
  36. Mavroeidis, G. Dong, G. and Papageorgiou, A. (2004), "Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems", Earthq. Eng. Struct. Dyn., 33(9), 1023-1049. https://doi.org/10.1002/eqe.391.
  37. Mohammadi-Haji, B. and Ardakani, A. (2020), "Numerical prediction of circular tunnel seismic behavior using hypoplastic soil constitutive model", Int. J. Geotech. Eng., 14(4), 428-441. https://doi.org/10.1080/19386362.2018.1438152.
  38. Mohammadi-Haji, B. and Ardakani, A. (2020), "Performance based analysis of tunnel under seismic events with nonlinear features of soil mass and lining", Soil Dyn. Earthq. Eng., 134, 106158. https://doi.org/10.1016/j.soildyn.2020.106158.
  39. Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mech. Cohesive-Frictional Mater.: Int. J. Experim., Modelling Comput. Mater. Struct., 2(4), 279-299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3C279::AID-CFM29%3E3.0.CO;2-8.
  40. Pan, H., Li, C. and Tian, L. (2020), "Seismic response and failure analyses of pile-supported transmission towers on layered ground", Struct. Eng. Mech., 76(2), 223-237. http://dx.doi.org/10.12989/sem.2020.76.2.223.
  41. Raheem, S.E.A. Aal, E.M.A. AbdelShafy, A.G. Fahmy, M.F. and Mansour, M.H. (2020a), "Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis", Earthq. Struct., 18(4), 407-421. http://dx.doi.org/10.12989/eas.2020.18.4.407.
  42. Raheem, S.E.A. Aal, E.M.A. AbdelShafy, A.G. Mansour, M.H. and Omar, M. (2020b), "Numerical analysis for structure-pilefluid-soil interaction model of fixed offshore platform", Ocean Syst. Eng., 10(3), 243-266. http://dx.doi.org/10.12989/ose.2020.10.3.243.
  43. Schofield, A. and Wroth, C. (1968), Critical State Soil Mechanics, McGraw-Hill, London.
  44. Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M., and Safa, M. (2019). "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., 19(6), 473-484. http://dx.doi.org/10.12989/gae.2020.19.6.473.
  45. Simulia, D.C.S. (2011). ABAQUS 6.11 analysis user's manual, Abaqus 6.11.
  46. Singh, J.P. (1985), "Earthquake ground motions: implications for designing structures and reconciling structural damage", Earthq. Spectra, 1(2), 239-270. https://doi.org/10.1193/1.1585264
  47. Somerville, P. (2000), "New developments in seismic hazard estimation", Proceedings of the 6th International Conference on Seismic Zonation, Palm Springs, C.A.
  48. Somerville, P.G. Smith, N.F. Graves, R.W. and Abrahamson, N.A. (1997), "Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity", Seismol. Res. Let., 68(1), 199-222. https://doi.org/10.1785/gssrl.68.1.199.
  49. Stewart, J.P. and Kramer, S.L. (2004), "Geotechnical aspects of seismic hazards", Earthq. Eng., 123-230, CRC Press.
  50. Tang, Y. and Zhang, J. (2011), "Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions", Soil Dyn. Earthq. Eng., 31(1), 59-76. https://doi.org/10.1016/j.soildyn.2010.08.006.
  51. Taravati, H. and Ardakani, A. (2018), "The numerical study of seismic behavior of gravity retaining wall built near rock face", Earthq. Struct., 14(2), 179-186. http://dx.doi.org/10.12989/eas.2018.14.2.179.
  52. von Wolffersdorff, P.A. (1996), "A hypoplastic relation for granular materials with a predefined limit state surface", Mech. Cohesive-Frictional Materials: Int. J. Experim., Modelling Comput. Mater. Struct., 1(3), 251-271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3
  53. Wang, G.Q, Zhou, X.Y., Zhang, P.Z. and Igel, H. (2002), "Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake", Soil Dyn. Earthq. Eng., 22(1), 73-96. https://doi.org/10.1016/S0267-7261(01)00047-1.
  54. Won, J. Ahn, S.Y. Jeong, S. Lee, J. and Jang, S.Y. (2006), "Nonlinear three-dimensional analysis of pile group supported columns considering pile cap flexibility", Comput. Geotech., 33(6), 355-370. https://doi.org/10.1016/j.compgeo.2006.07.007.
  55. Zhang, M. Parke, G. and Chang, Z. (2018), "The dynamic response and seismic damage of single-layer reticulated shells subjected to near-fault ground motions", Earthq. Struct., 14(5), 399-409. http://dx.doi.org/10.12989/eas.2018.14.5.399.
  56. Zienkiewicz, O. Emson, C. and Bettess, P. (1983), "A novel boundary infinite element", Int. J. Numer. Meth. Eng., 19(3), 393-404. https://doi.org/10.1002/nme.1620190307