References
- Alavi, B. and Krawinkler, H. (2004), "Behavior of moment-resisting frame structures subjected to near-fault ground motions", Earthq. Eng. Struct. Dyn., 33(6), 687-706. https://doi.org/10.1002/eqe.369.
- Anandarajah, A. and Zhang, J. (2000), "Simplified finite element modeling of nonlinear dynamic pile-soil interaction", Retrieved February, 10, 2005.
- Ansari, M. Safiey, A. and Abbasi, M. (2020), "Fragility based performance evaluation of mid rise reinforced concrete frames in near field and far field earthquakes", Struct. Eng. Mech., 76(6), 751. http://dx.doi.org/10.12989/scs.2020.76.6.751.
- Arnold, M. (2008), "Application of the Intergranular Strain Concept to the Hypoplastic Modelling of Non-Adhesive Interfaces", The 12th Int. Conference of IACMAG.
- Atefatdoost, G.R. JavidSharifi, B. and Shakib, H. (2018), "Effects of foundation flexibility on seismic demands of asymmetric buildings subject to near-fault ground motions", Struct. Eng. Mech., 66(5), 637-648. http://dx.doi.org/10.12989/sem.2018.66.5.637.
- Baker, J.W. (2007), "Quantitative classification of near-fault ground motions using wavelet analysis", Bull. Seismol. Soc. Amer., 97(5), 1486-1501. https://doi.org/10.1785/0120060255.
- Bauer, E. (1996), "Calibration of a comperhensive hypoplastic model for granular materials", Soils Found., 36(1), 13-26. https://doi.org/10.3208/sandf.36.13.
- Bentley, K.J. and Naggar, M.H.E. (2000), "Numerical analysis of kinematic response of single piles", Canadian Geotech. J., 37(6), 1368-1382. https://doi.org/10.1139/t00-066.
- Bilotta, E. Lanzano, G. Madabhushi, S.P.G. and Silvestri, F. (2014), "A numerical round robin on tunnels under seismic actions", Acta Geotech., 9, 563-579. https://doi.org/10.1007/s11440-014-0330-3.
- Bowles, J.E. (1982), Foundation design and analysis, McGraw-Hill, New York.
- Bradley, B.A. Cubrinovski, M. Dhakal, R.P. and MacRae, G.A. (2009), "Intensity measures for the seismic response of pile foundations", Soil Dyn. Earthq. Eng., 29(6), 1046-1058. https://doi.org/10.1016/j.soildyn.2008.12.002.
- Bray, J.D. and Rodriguez-Marek, A. (2004), "Characterization of forward-directivity ground motions in the near-fault region", Soil Dyn. Earthq. Eng., 24(11), 815-828. https://doi.org/10.1016/j.soildyn.2004.05.001.
- Chang, Z. Liu, Z. Chen, Z. and Zhai, C. (2019), "Use of near-fault pulse-energy for estimating critical structural responses", Earthq. Struct., 16(4), 415-423. http://dx.doi.org/10.12989/eas.2019.16.4.415.
- Chau, K. Shen, C. and Guo, X. (2009), "Nonlinear seismic soil-pile-structure interactions: Shaking table tests and FEM analyses", Soil Dyn. Earthq. Eng., 29(2), 300-310. https://doi.org/10.1016/j.soildyn.2008.02.004.
- Chen, X. (1995), Near-field ground motion from the Landers earthquake, California Institute of Technology. https://resolver.caltech.edu/CaltechTHESIS:12012011110028500.
- Cui, C. Zhang, S. Chapman, D. and Meng, K. (2018), "Dynamic impedance of a floating pile embedded in poro-visco-elastic soils subjected to vertical harmonic loads", Geomech. Eng., 15(2), 793-803. http://dx.doi.org/10.12989/gae.2018.15.2.793.
- Fleming, K. Weltman, A. Randolph, M. and Elson, K. (1985), Piling engineering, John Wiley and Sons, New York.
- Ghorbani, A, Hasanzadehshooiili, H, Ghamari, E. and Medzvieckas, J. (2014), "Comprehensive three dimensional finite element analysis, parametric study and sensitivity analysis on the seismic performance of soil-micropile-superstructure interaction", Soil Dyn. Earthq. Eng., 58, 21-36. https://doi.org/10.1016/j.soildyn.2013.12.001.
- Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soils Found., 36(1), 1-12. https://doi.org/10.3208/sandf.36.1.
- Hall, J.F. Heaton, T.H. Halling, M.W. and Wald, D.J. (1995), "Near-source ground motion and its effects on flexible buildings", Earthq. Spectra, 11(4), 569-605. https://doi.org/10.1193/1.1585828
- Herle, I. and Gudehus, G. (1999), "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mech. Cohesive-Frictional Mater., 4(5), 461-486. https://doi.org/10.1002/(SICI)10991484(199909)4:5<461::AIDCFM71>3.0.CO;2-P.
- Hokmabadi, A.S. Fatahi, B. and Samali, B. (2014), "Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations", Comput. Geotech., 55, 172-186. https://doi.org/10.1016/j.compgeo.2013.08.011.
- Hwang, T.H. Kim, K.H. and Shin, J.H. (2017), "Bearing capacity of micropiled-raft system", Struct. Eng. Mech., 63(3), 417-428. http://dx.doi.org/10.12989/sem.2017.63.3.417.
- Iervolino, I. Chioccarelli, E. and Baltzopoulos, G. (2012), "Inelastic displacement ratio of near-source pulse-like ground motions", Earthq. Eng. Struct. Dyn., 41(15), 2351-2357. https://doi.org/10.1002/eqe.2167.
- Kalkan, E. and Kunnath, S.K. (2006), "Effects of fling step and forward directivity on seismic response of buildings", Earthq. Spectra, 22(2), 367-390. https://doi.org/10.1193/1.2192560.
- Kolymbas, D. (1985), "A generalized hypoelastic constitutive law", Proceedings of XI International Conference Soil Mechanics and Foundation Engineering, AA Balkema, San Francisco.
- Kolymbas, D. (2000), "The misery of constitutive modelling. Constitutive Modelling of Granular Materials", Springer, 11-24.
- Kramer, S.L. (1996), "Geotechnical earthquake engineering", Prentice Hall.
- Kumar, M.P. Raju, P.M. Jasmine, G.V. and Aditya, M. (2020), "Settlement analysis of pile cap with normal and under-reamed piles", Comput. Concrete, 25(6), 525-535. http://dx.doi.org/10.12989/cac.2020.25.6.525.
- Lanzano, G. Bilotta, E. Russo, G. and Silvestri, F. (2014), "Experimental and numerical study on circular tunnels under seismic loading.", Europe. J. Environ. Civil Eng., 19, 539-563. https://doi.org/10.1080/19648189.2014.893211.
- Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95(4), 859-878. https://doi.org/10.1061/JMCEA3.0001144
- Maheshwari, B. and Sarkar, R. (2011), "Seismic behavior of soilpile-structure interaction in liquefiable soils: Parametric study", Int. J. Geomech., 11(4). 335-347. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000087.
- Maheshwari, B., Truman, K, El Naggar, M. and Gould, P. (2004), "Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction", Soil Dyn. Earthq. Eng., 24(4), 343-356. https://doi.org/10.1016/j.soildyn.2004.01.001.
- Masin, D. (2019), "Modeling of soil behavior with Hypoplasticity: Another Approach to soil constitutive modeling", Springer Series in Geomechanics and Geoengineering.
- Matsumoto, T. Fukumura, K. Horikoshi, K. and Oki, A. (2004), "Shaking table tests on model piled rafts in sand considering influence of superstructures", Int. J. Phys. Modelling Geotech., 4(3), 21-38. https://doi.org/10.1680/ijpmg.2004.040302.
- Mavroeidis, G. Dong, G. and Papageorgiou, A. (2004), "Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems", Earthq. Eng. Struct. Dyn., 33(9), 1023-1049. https://doi.org/10.1002/eqe.391.
- Mohammadi-Haji, B. and Ardakani, A. (2020), "Numerical prediction of circular tunnel seismic behavior using hypoplastic soil constitutive model", Int. J. Geotech. Eng., 14(4), 428-441. https://doi.org/10.1080/19386362.2018.1438152.
- Mohammadi-Haji, B. and Ardakani, A. (2020), "Performance based analysis of tunnel under seismic events with nonlinear features of soil mass and lining", Soil Dyn. Earthq. Eng., 134, 106158. https://doi.org/10.1016/j.soildyn.2020.106158.
- Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mech. Cohesive-Frictional Mater.: Int. J. Experim., Modelling Comput. Mater. Struct., 2(4), 279-299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3C279::AID-CFM29%3E3.0.CO;2-8.
- Pan, H., Li, C. and Tian, L. (2020), "Seismic response and failure analyses of pile-supported transmission towers on layered ground", Struct. Eng. Mech., 76(2), 223-237. http://dx.doi.org/10.12989/sem.2020.76.2.223.
- Raheem, S.E.A. Aal, E.M.A. AbdelShafy, A.G. Fahmy, M.F. and Mansour, M.H. (2020a), "Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis", Earthq. Struct., 18(4), 407-421. http://dx.doi.org/10.12989/eas.2020.18.4.407.
- Raheem, S.E.A. Aal, E.M.A. AbdelShafy, A.G. Mansour, M.H. and Omar, M. (2020b), "Numerical analysis for structure-pilefluid-soil interaction model of fixed offshore platform", Ocean Syst. Eng., 10(3), 243-266. http://dx.doi.org/10.12989/ose.2020.10.3.243.
- Schofield, A. and Wroth, C. (1968), Critical State Soil Mechanics, McGraw-Hill, London.
- Shariati, M., Azar, S.M., Arjomand, M.A., Tehrani, H.S., Daei, M., and Safa, M. (2019). "Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils", Geomech. Eng., 19(6), 473-484. http://dx.doi.org/10.12989/gae.2020.19.6.473.
- Simulia, D.C.S. (2011). ABAQUS 6.11 analysis user's manual, Abaqus 6.11.
- Singh, J.P. (1985), "Earthquake ground motions: implications for designing structures and reconciling structural damage", Earthq. Spectra, 1(2), 239-270. https://doi.org/10.1193/1.1585264
- Somerville, P. (2000), "New developments in seismic hazard estimation", Proceedings of the 6th International Conference on Seismic Zonation, Palm Springs, C.A.
- Somerville, P.G. Smith, N.F. Graves, R.W. and Abrahamson, N.A. (1997), "Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity", Seismol. Res. Let., 68(1), 199-222. https://doi.org/10.1785/gssrl.68.1.199.
- Stewart, J.P. and Kramer, S.L. (2004), "Geotechnical aspects of seismic hazards", Earthq. Eng., 123-230, CRC Press.
- Tang, Y. and Zhang, J. (2011), "Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions", Soil Dyn. Earthq. Eng., 31(1), 59-76. https://doi.org/10.1016/j.soildyn.2010.08.006.
- Taravati, H. and Ardakani, A. (2018), "The numerical study of seismic behavior of gravity retaining wall built near rock face", Earthq. Struct., 14(2), 179-186. http://dx.doi.org/10.12989/eas.2018.14.2.179.
- von Wolffersdorff, P.A. (1996), "A hypoplastic relation for granular materials with a predefined limit state surface", Mech. Cohesive-Frictional Materials: Int. J. Experim., Modelling Comput. Mater. Struct., 1(3), 251-271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3
- Wang, G.Q, Zhou, X.Y., Zhang, P.Z. and Igel, H. (2002), "Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake", Soil Dyn. Earthq. Eng., 22(1), 73-96. https://doi.org/10.1016/S0267-7261(01)00047-1.
- Won, J. Ahn, S.Y. Jeong, S. Lee, J. and Jang, S.Y. (2006), "Nonlinear three-dimensional analysis of pile group supported columns considering pile cap flexibility", Comput. Geotech., 33(6), 355-370. https://doi.org/10.1016/j.compgeo.2006.07.007.
- Zhang, M. Parke, G. and Chang, Z. (2018), "The dynamic response and seismic damage of single-layer reticulated shells subjected to near-fault ground motions", Earthq. Struct., 14(5), 399-409. http://dx.doi.org/10.12989/eas.2018.14.5.399.
- Zienkiewicz, O. Emson, C. and Bettess, P. (1983), "A novel boundary infinite element", Int. J. Numer. Meth. Eng., 19(3), 393-404. https://doi.org/10.1002/nme.1620190307