References
- ASCE (2010), Minimum Design Loads for Buildings and Other Structures, Restorn, V.A, U.S.A.
- BHRC (Building and Housing Research Center), (2012), Iranian Code of Practice for Seismic Resistant Design of Buildings, Standard No. 2800, 4rd edn. BHRC: Tehran, Iran.
- Chan, Ricky W.K. and Faris A. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005.
- Dargush, G and Soong, T. (1997), "Passive energy dissipation and active control", In Handbook of Structural Engineering, Second Edition, 1-28. CRC Press. https://doi.org/10.1201/9781439834350.ch27.
- Faridmehr, I., Mohd Hanim, O., Mahmood Bin Md, T., Ali Farokhi, N. and Reza H. (2015), "Seismic and progressive collapse assessment of sideplate moment connection system", Struct. Eng. Mech., 54(1), 35-54. https://doi.org/10.12989/sem.2015.54.1.035.
- FEMA P695 (2009), Quantification of Building Seismic Performance Factors. Fema P695, no. June: 421.
- Fu, F. (2012), "Response of a multi-storey steel composite building with concentric bracing under consecutive column removal scenarios", J. Construct. Steel Res. 70, 115-126. https://doi.org/10.1016/j.jcsr.2011.10.012.
- Fu, F. (2016), Structural Analysis and Design to Prevent Disproportionate Collapse. Structural Analysis and Design to Prevent Disproportionate Collapse. CRC Press. https://doi.org/10.1201/b19662
- Ghods, S., Kheyroddin, A., Nazeryan, M., Mirtaheri, S.M. and Gholhaki, M. (2016), "Nonlinear behavior of connections in RCS frames with bracing and steel plate shear wall", Steel Compos. Struct., 22(4), 915-935. http://dx.doi.org/10.12989/scs.2016.22.4.915.
- Griffiths, H., Pugsley, A.G. and Saunders, O. (1968), Report of the Inquiry into the Collapse of Flats at Ronan Point, Canning Town.
- GSA (2013), Alternate Path Analysis and Design Guidelines for Progressive Collapse Resistance, General Services Administration, Washington, U.S.A.
- Jalali Larijani, R., Heydar Dashti, N. and Iman, A. (2017), "Progressive collapse analysis of buildings with concentric and eccentric braced frames", Struct. Eng. Mech., 61(6), 755-763. https://doi.org/10.12989/sem.2017.61.6.755.
- Karami-Mohammadi, R., Mirtaheri, M., Salkhordeh, M., Mosaffa, E., Mahdavi, G. and Hariri-Ardebili, M.A. (2019), "Seismic mitigation of substation cable connected equipment using friction pendulum systems", Struct. Eng. Mech., 72(6), 785-796. https://doi.org/10.12989/sem.2019.72.6.785.
- Karimiyan, S., Moghadam, A.S., Husseinzadeh Kashan, A. and Karimiyan, M. (2015), "Progressive collapse evaluation of Rc symmetric and asymmetric midrise and tall buildings under earthquake loads", Int. J. Civil Eng., 13(1), 30-44. https://doi.org/10.22068/IJCE.13.1.30.
- Karimiyan, S., Moghadam, A.S. and Vetr, M.G. (2013), "Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan", Earthq. Struct., 5(3), 277-296. https://doi.org/10.12989/eas.2013.5.3.277.
- Kim, J., Lee, S. and Min, K.W. (2014), "Design of MR dampers to prevent progressive collapse of moment frames", Struct. Eng. Mech., 52(2), 291-306. https://doi.org/10.12989/sem.2014.52.2.291.
- Malhotra, A., Carson, D., Gopal, P., Braimah, A., Di Giovanni, G. and Pall, R. (20040), "Friction dampers for seismic upgrade of St. Vincent hospital, Ottawa", The 13 Th World Conference on Earthquake Engineering, No. Paper No. 1952.
- Mashhadi, J. and Hamed, S. (2016), "Effects of damping ratio on dynamic increase factor in progressive collapse", Steel Compos. Struct., 22(3), 677-690. https://doi.org/10.12989/scs.2016.22.3.677
- Mirtaheri, M. and Abbasi Zoghi, M. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357.
- Mirtaheri, M., Emami, F., Zoghi, M.A. and Salkhordeh, M. (2019), "Mitigation of progressive collapse in steel structures using a new passive connection", Struct. Eng. Mech., 70(4), 381-394. https://doi.org/10.12989/SEM.2019.70.4.381.
- Mirtaheri, M., Amir Peyman, Z., Sahand Sharifi, S. and Hamid Rahmani, S. (2011), "Numerical and experimental study of hysteretic behavior of cylindrical friction dampers", Eng. Struct., https://doi.org/10.1016/j.engstruct.2011.07.029.
- Mirtaheri, M., Sehat, S. and Nazeryan, M. (2018), "Improving the behavior of buckling restrained braces through obtaining optimum steel core length", Struct. Eng. Mech., 65(4), 401-408. https://doi.org/10.12989/sem.2018.65.4.401.
- Song Brian, I. and Halil, S. (2013), "Experimental and analytical progressive collapse assessment of a steel frame building", Eng. Struct., https://doi.org/10.1016/j.engstruct.2013.05.050.
- Starossek, U. (2007), "Typology of progressive collapse", Eng. Struct., 29(9), 2302-2307. https://doi.org/10.1016/j.engstruct.2006.11.025.
- Tavakoli, H.R., Naghavi, F. and Goltabar, A.R. (2015), "Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse", Earthq. Struct. 9(3), 639-656. https://doi.org/10.12989/eas.2015.9.3.639.
- Tavakoli, H.R. and Hasani, A.H. (2017), "Effect of earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame", Earthq. Struct., 12(4), 529-541. https://doi.org/10.12989/eas.2017.12.5.529.
- UFC 4-023-03. (2013), Design of Buildings to Resist Progressive Collapse, Department of Defense, Washington, D.C., U.S.A.
- Yuan, W. and Kang Hai, T. (2011), "Modeling of progressive collapse of a multi-storey structure using a spring-mass-damper system", Struct. Eng. Mech., 37(1), 79-93. https://doi.org/10.12989/sem.2011.37.1.079.