References
- AISC. (2005), Seismic Provisions for Structural Steel Buildings, AISC 341-05. Chicago: American Institute of Steel Construction.
- Alitalesh, M., Shahnazari, H. and Baziar, M.H. (2018), "Parametric study on seismic topography-soil-structure interaction; topographic effect", Geotech. Geol. Eng., 36(4), 2649-2666. https://doi.org/10.1007/s10706-018-0489-8.
- Amorosi, A., D. Boldini, and G. Elia. (2010), "Parametric study on seismic ground response by finite element modelling", Comput. Geotech., 37(4), 515-528. https://doi.org/10.1016/j.compgeo.2010.02.005.
- ASCE 41 (2007), Seismic Rehabilitation of Existing Buildings, Virginia: American Society of Civil Engineers.
- Assimaki, D., and Kausel, E. (2007), "Modified topographic amplification factors for a single-faced slope due to kinematic soil-structure interaction", J. Geotech. Geoenviron. Eng., 133(11), 1414-1431. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1414).
- Assimaki, D., Kausel, E. and Gazetas. G. (2005), "Soil-dependent topographic effects: a case study from the 1999 Athens earthquake", Earthq. Spect., 21(4), 929-966. https://doi.org/10.1193/1.2068135.
- Bagheri, M., Jamkhaneh, M.E. and Samali, B. (2018), "Effect of seismic soil-pile-structure interaction on mid-and high-rise steel buildings resting on a group of pile foundations", Int. J. Geomech., 18(9), 04018103. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001222.
- Bararpour, M., Janalizade, A. and Tavakoli. H.R. (2016), "The effect of 2D slope and valley on Seismic site response", Arab. J. Geosci., 9(2), 93. https://doi.org/10.1007/s12517-015-2039-5.
- Benz, T. (2006), "Small-strain stiffness of soils and its numerical consequences", Ph.D. Dissertation, University of Stuttgart, Germany.
- Benz, T., Vermeer, P.A. and Schwab, R. (2009), "A small-strain overlay model", Int. J. Numer. Anal. Meth Geomech., 33(1), 25-44. https://doi.org/10.1002/nag.701.
- Bi, K. and Hao, H. (2011), "Influence of irregular topography and random soil properties on coherency loss of spatial seismic ground motions", Earthq. Eng. Struct. Dyn., 40(9), 1045-1061. https://doi.org/10.1002/eqe.1077.
- Bouckovalas, G.D. and Papadimitriou, A.G. (2005), "Numerical evaluation of slope topography effects on seismic ground motion", Soil Dyn. Earthq. Eng., 25(7-10), 547-558. https://doi.org/10.1016/j.soildyn.2004.11.008.
- Bozorgnia, Y. and Bertero, V.V. (2004), Earthquake Engineering: From Engineering Seismology to Performance-Based Engineering, CRC press.
- Clough, R. and Penzien, J. (2003), Dynamics of Structures, Berkeley: Computers and Structures Inc.
- Di Fiore, V. (2010), "Seismic site amplification induced by topographic irregularity: Results of a numerical analysis on 2D synthetic models", Eng. Geol., 114(3-4), 109-115. (https://doi.org/10.1016/j.enggeo.2010.05.006.
- Erfani, A., Ghanbari, A. and Massumi, A. (2019), "Seismic behaviour of structures adjacent to slope by considering SSI effects in cemented soil mediums", Int. J. Geotech. Eng., 1-13, https://doi.org/10.1080/19386362.2019.1681817.
- Far, H. (2019a), "Advanced computation methods for soilstructure interaction analysis of structures resting on soft soils", Int. J. Geotech. Eng., 13(4), 352-359. https://doi.org/10.1080/19386362.2017.1354510.
- Far, H. (2019b), "Dynamic behaviour of unbraced steel frames resting on soft ground", Steel Construct., 12(2): 135-140. https://doi.org/10.12989/gae.2014.7.5.495.
- Farghaly, A.A. (2015), "Evaluation of seismic performance of buildings constructed on hillside slope of Dronka village - Egypt", Int. J. Geotech. Eng., 9(2), 176-189. https://doi.org/10.1179/1939787914Y.0000000053
- Fatahi, B., Basack, S., Ryan, P., Zhou, W.H. and Khabbaz, H. (2014), "Performance of laterally loaded piles considering soil and interface parameters", Geomech. Eng., 7(5), 495-524. http://hdl.handle.net/10453/34300. https://doi.org/10.12989/gae.2014.7.5.495
- Favvata, M.J., Naoum, M.C. and Karayannis, C.G. (2013), "Limit states of RC structures with first floor irregularities", Struct. Eng. Mech., 47(6), 791-818. https://doi.org/10.12989/sem.2013.47.6.791.
- Flogeras, A.K. and Papagiannopoulos, G.A. (2017), "On the seismic response of steel buckling-restrained braced structures including soil-structure interaction", Earthq. Struct, 12(4), 469-478. http://dx.doi.org/10.12989/eas.2017.12.4.469.
- Fotopoulou, S.D. and Pitilakis, K.D. (2013), "Fragility curves for reinforced concrete buildings to seismically triggered slowmoving slides", Soil Dyn. Earthq. Eng., 48, 143-161. https://doi.org/10.1016/j.soildyn.2013.01.004.
- Fotopoulou, S.D. and Pitilakis, K.D. (2017), "Vulnerability assessment of reinforced concrete buildings at precarious slopes subjected to combined ground shaking and earthquake induced landslide", Soil Dyn. Earthq. Eng., 93, 84-98. https://doi.org/10.1016/j.soildyn.2016.12.007.
- Gazetas, G., Kallou, P.V. and Psarropoulos, P.N. (2002), "Topography and soil effects in the M s 5.9 Parnitha (Athens) earthquake: the case of Adames", Nat. Hazards., 27(1-2), 133-169. https://doi.org/10.1023/A:1019937106428.
- Geli, L., Bard, P.Y. and Jullien, B. (1988), "The effect of topography on earthquake ground motion: a review and new results", Bull. Seismol. Soc. Am., 78(1), 42-63. https://doi.org/10.1785/BSSA0780010042
- Ghanbari, E. and Ghanbari, A. (2016), "A new criterion for considering soil-structure interaction on analysis of moment frames", Int. J. Struct. Eng., 7(1), 31-47. https://doi.org/10.1504/IJSTRUCTE.2016.073677.
- Ghanbari, E. and Hamidi, A. (2015), "Improvement parameters in dynamic compaction adjacent to the slopes", J. Rock Mech. Geotech. Eng., 7(2), 233-236. (https://doi.org/10.1016/j.jrmge.2015.02.002.
- Ghandil, M. and Behnamfar, F. (2017), "Ductility demands of MRF structures on soft soils considering soil-structure interaction", Soil Dyn. Earthq. Eng., 92, 203-214. https://doi.org/10.1016/j.soildyn.2016.09.051.
- Goda, K. and Tesfamariam, S. (2015), "Multi-variate seismic demand modelling using copulas: Application to non-ductile reinforced concrete frame in Victoria, Canada", Struct Safety, 56, 39-51. https://doi.org/10.1016/j.strusafe.2015.05.004.
- Goody, J., Chandler, R., Clancy, J., Dixon, D. and Wooding, G. (2010), Building Type Basics for Housing, John Wiley & Sons.
- Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: measurement and parameter effects", J. Soil Mech. Found. Div., 98(sm6). https://doi.org/10.1061/JSFEAQ.0001756.
- Haselton, C.B. and Pacific Earthquake Engineering Research Center (2008), "Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings", Pacific Earthquake Engineering Research Center.
- Hokmabadi, A.S. and Fatahi, B. (2016) "Influence of foundation type on seismic performance of buildings considering soilstructure interaction", Int. J. Struct Stab. Dyn., 16(08), 1550043. https://doi.org/10.1142/S0219455415500431.
- Hokmabadi, A.S., Fatahi, B. and Samali, B. (2014), "Seismic response of mid-rise buildings on shallow and end-bearing pile foundations in soft soil", Soil. Found., 54(3), 345-363. https://doi.org/10.1016/j.sandf.2014.04.020.
- IBC 2800 (2015), Iranian Code of Practice for Seismic Resistant Design of Buildings, Building and Housing Research Center, Tehran, Iran.
- IIEES (2017), "Preliminary earthquake report of 3 November 2017 in Kermanshah province with moment magnitude (Mw) 7.3 (fouth Edith)", International Institute of Earthquake Engineering and Seismology.
- Izzuddin, B.A. (1990), "Nonlinear dynamic analysis of framed structures", Department of Civil Engineering, Imperial College, University of London.
- Izzuddin, B.A., Karayannis, C.G. and Elnashai, A.S. (1994), "Advanced nonlinear formulation for reinforced concrete beamcolumns", J. Struct. Eng., 120(10), 2913-2934. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2913.
- Jayalekshmi, B.R., Thomas, A. and Shivashankar, R. (2014), "Dynamic soil-structure interaction studies on 275m tall industrial chimney with openings", Earthq. Struct., 7(2), 233-250. http://dx.doi.org/10.12989/eas.2014.7.2.233.
- Karayannis, C.G., Izzuddin, B.A. and Elnashai, A.S. (1994), "Application of adaptive analysis to reinforced concrete frames", J. Struct Eng, 120(10), 2935-2957. (https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2935).
- Khazaei, J., Amiri, A. and Khalilpour, M. (2017), "Seismic evaluation of soil-foundation-structure interaction: Direct and Cone model", Earthq. Struct., 12(2), 251-262. http://dx.doi.org/10.12989/eas.2017.12.2.251.
- Krishnamoorthy, A. (2013), "Effect of soil-structure interaction for a building isolated with FPS", Earthq. Struct, 4(3), 285-297. http://dx.doi.org/10.12989/eas.2013.4.3.285.
- Kwok, A.O., Stewart, J.P., Hashash, Y.M., Matasovic, N., Pyke, R., Wang, Z. and Yang, Z. (2007), "Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures", J. Geotech. Geoenviron. Eng., 133(11), 1385-1398. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1385).
- Lee, D. (2017), "Behavior analysis of aerial tunnel maintenance truss platform with high tensile steel UL-700", Steel and Composite Struct, 24(4), 513-521. (https://doi.org/10.12989/scs.2017.24.3.383.
- Luo, C., Lou, M., Gui, G. and Wang, H. (2019), "A modified domain reduction method for numerical simulation of wave propagation in localized regions", Earthq. Eng. Eng. Vib., 18(1), 35-52. https://doi.org/10.1007/s11803-019-0488-7.
- Massumi, A., Mahboubi, B. and Ameri, M.R. (2015), "Seismic response of RC frame structures strengthened by reinforced masonry infill panels", Earthq. Struct., 8(6), 1435-1452. (http://dx.doi.org/10.12989/eas.2015.8.6.1435.
- Mortezaei, A. (2013), "Plastic hinge length of RC columns considering soil-structure interaction", Earthq. Struct., 5(6), 679-702. https://doi.org/10.12989/eas.2013.5.6.679.
- Murty, C.V.R. and Jain, S.K. (2000), "Beneficial influence of masonry infill walls on seismic performance of RC frame buildings", In the 12th world conference on earthquake engineering.
- Nguyen, T.C., Huynh, T.C. and Kim, J.T. (2015), "Numerical evaluation for vibration-based damage detection in wind turbine tower structure", Wind Struct, 21(6), 657-675. http://dx.doi.org/10.12989/was.2015.21.6.657.
- Nguyen, V.Q., Fatahi, B. and Hokmabadi, A.S. (2016), "The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction", Struct. Eng. Mech., 58(6), 1045-1075. http://dx.doi.org/10.12989/sem.2016.58.6.1045.
- Nguyen, V.Q., Fatahi, B. and Hokmabadi, A.S. (2017), "Influence of size and load-bearing mechanism of piles on seismic performance of buildings considering soil-pile-structure interaction", Int. J. Geomech., 17(7), 04017007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000869.
- Pedersen, H., Le Brun, B., Hatzfeld, D., Campillo, M. and Bard, P.Y. (1994), "Ground-motion amplitude across ridges", Bull. Seismol. Soc. Am., 84(6), 1786-1800. https://doi.org/10.1785/BSSA0840061786
- Rahvar. (2006), "Geotechnical investigations and foundation design report of Kooh-e-Noor Commercial Building", Final Rep. P.O., 1-69, Tehran, Iran: Rahvar Pty, Ltd.
- Rayhani, M.H. and El Naggar, M.H. (2008), "Numerical modeling of seismic response of rigid foundation on soft soil", Int. J. Geomech., 8(6), 336-346. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:6(336).
- Rizzitano, S., Cascone, E. and Biondi, G. (2014), "Coupling of Topographic and Stratigraphic Effects on Seismic Response of Slopes through 2D Linear and Equivalent Linear Analyses", Soil Dyn. Earthq. Eng., 67, 66-84. https://doi.org/10.1016/j.soildyn.2014.09.003.
- Shabani, M.J. and Ghanbari, A. (2020a), "Design curves for estimation of amplification factor in the slope topography considering nonlinear behavior of soil", Indian Geotech. J., 50(6), 907-924. https://doi.org/10.1007/s40098-020-00443-1.
- Shabani, M.J. and Ghanbari, A. (2020b), "Comparison of seismic behavior of steel building adjacent to slope topography by considering fixed-base, SSI and TSSI", Asian J. Civ. Eng., 21(7), 1151-1169. https://doi.org/10.1007/s42107-020-00266-8.
- Shah, B.A., Mistry, D.A. and Patodi, S.C. (2011), "Seismic evaluation of buildings with post-tensioned floors by pushover analysis", J. Struct Eng, 38(5), 417-427.
- Shamsi, M. and Ghanbari, A. (2020a), "Nonlinear dynamic analysis of Qom Monorail Bridge considering Soil-Pile-BridgeTrain Interaction", Transp. Geotech., 22, 100309. https://doi.org/10.1016/j.trgeo.2019.100309.
- Shamsi, M. and Ghanbari, A. (2020b), "Seismic Retrofit of Monorail Bridges Considering Soil-Pile-Bridge-Train Interaction", J. Bridge Eng., 25(10), 04020075. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001613.
- Sharifi, B., Nouri, G., & Ghanbari, A. (2020), "Structure-soilstructure interaction in a group of buildings using 3D nonlinear analyses", Earthq. Struct., 18(6), 667-675. http://dx.doi.org/10.12989/eas.2020.18.6.667.
- Shirgir, V., Ghanbari, A. and Shahrouzi, M. (2016), "Natural frequency of single pier bridges considering soil-structure interaction", J. Earthq. Eng., 20(4), 611-632. https://doi.org/10.1080/13632469.2015.1104754.
- Sitar, N. and Clough, G.W. (1983), "Seismic Response of Steep Slopes in Cemented Soils", J. Geotech. Eng., 109(2), 210-227. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:2(210).
- Sun, J.I., R. Golesorkhi, and H.B. Seed. (1988), Dynamic Moduli and Damping Ratios for Cohesive Soils, Berkeley: Earthquake Engineering Research Center, University of California.
- Tabatabaiefar, H. R. and Fatahi, B. (2014), "Idealisation of soilstructure system to determine inelastic seismic response of midrise building frames", Soil Dyn. Earthq. Eng., 66, 339-351. https://doi.org/10.1016/j.soildyn.2014.08.007.
- Tripe, R., Kontoe, S. and Wong, T.K.C. (2013), "Slope topography effects on ground motion in the presence of deep soil layers. Soil Dyn. Earthq. Eng., 50, 72-84. https://doi.org/10.1016/j.soildyn.2013.02.011.
- Tsai, C.C. and Lin, C.H. (2018), "Prediction of earthquakeinduced slope displacements considering 2D topographic amplification and flexible sliding mass", Soil Dyn. Earthq. Eng., 113, 25-34. https://doi.org/10.1016/j.soildyn.2018.05.022.
- Van Cao, V. (2018), "Effect of soil-structure interaction on seismic damage of mid-rise reinforced concrete structures retrofitted by FRP composites", Earthq. Struct., 15(3), 307-317. http://dx.doi.org/10.12989/eas.2018.15.3.307.
- Wolf, J. (1994), Foundation Vibration Analysis Using Simple Physical Models, Prentice Hall Co, New Jersey.
- Zhang, Z., Fleurisson, J.A. and Pellet, F. (2018), "The effects of slope topography on acceleration amplification and interaction between slope topography and seismic input motion", Soil Dyn. Earthq. Eng., 113, 420-431. https://doi.org/10.1016/j.soildyn.2018.06.019.