DOI QR코드

DOI QR Code

복합재 패널에서 유도 탄성파를 이용한 이미지 기반 손상탐지 기법 개발 Part I. 손상위치 탐지 알고리즘

Image Based Damage Detection Method for Composite Panel With Guided Elastic Wave Technique Part I. Damage Localization Algorithm

  • 투고 : 2020.09.24
  • 심사 : 2020.12.18
  • 발행 : 2021.01.01

초록

본 논문은 복합재 패널에서 압전 작동기를 사용하여 탄성파를 생성하고, 손상에서의 반사된 신호를 압전 감지기에서 탐지하여 손상위치를 추정할 수 있는 알고리즘을 개발하였다. 손상이 없는 신호와 손상이 있는 신호를 비교하여 손상신호를 추정하는 진단적 접근방법을 사용하였다. 신호 상관관계를 이용하여 탄성파의 군속도를 계산하고 압전기 위치정보를 이용하여 손상정보를 추출하였다. 하지만 탄성파의 비선형 특성으로 인해, 손상정보는 다양한 신호의 조합으로 구성되기 때문에, 손상위치를 명확히 구별하기 어렵다. 이에 본 논문에서는 손상에서 반사된 신호정보를 신호 도달거리의 면적으로 변환해서 손상의 중심위치를 찾는 누적함수 특성벡터 알고리즘(CSFV, cumulative summation feature vector)을 새롭게 제안하고, 특성벡터를 손상지수와의 곱으로 표현하는 가시화 기법을 적용하였다. 또한 복합재 패널에서 실험검증을 수행하고, 기존의 알고리즘과의 비교를 통해 제안된 알고리즘이 정확도 높게 손상위치를 검출할 수 있음을 보였다.

In this paper, a new algorithm is proposed to estimate the damage location in the composite panel by extracting the elastic wave signal reflected from the damaged area. The guided elastic wave is generated by a piezoelectric actuator and sensed by a piezoelectric sensor. The proposed algorithm adopts a diagnostic approach. It compares the non-damaged signal with the damaged signal, and extract damage information along with sensor network and lamb wave group velocity estimated by signal correlation. However, it is difficult to clearly distinguish the damage location due to the nonlinear properties of lamb wave and complex information composed of various signals. To overcome this difficulty, the cumulative summation feature vector algorithm(CSFV) and a visualization technique are newly proposed in this paper. CSFV algorithm finds the center position of the damage by converting the signals reflected from the damage to the area of distance at which signals reach, and visualization technique is applied that expresses feature vectors by multiplying damage indexes. Experiments are performed for a composite panel and comparative study with the existing algorithms is carried out. From the results, it is confirmed that the damage location can be detected by the proposed algorithm with more reliable accuracy.

키워드

참고문헌

  1. Diamanti, K. and Soutis, C., "Structural health monitoring techniques for aircraft composite structures," Progress in Aerospace Sciences, Vol. 46, May 2010, pp. 342-352. https://doi.org/10.1016/j.paerosci.2010.05.001
  2. Guemes, A., Fernandez-Lopez, A., Pozo, A. R. and Sierra-Perez, J., "Structural Health Monitoring for Advanced Composite Structures : A Review," Journal of Composites Science, Vol. 4, No. 13, 2020.
  3. Ihn, J. B. and Chang, F. K., "Pictch-catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures," Structural Health Monitoring, Vol. 7, No. 1, 2008, pp. 5-15. https://doi.org/10.1177/1475921707081979
  4. Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C. and Rose, J. L., "Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: Part I. Defect detection, localization and growth monitoring," Smart Materials and Structures, Vol. 16, 2007, pp. 1208-1217. https://doi.org/10.1088/0964-1726/16/4/032
  5. Kannusamy, M., Kapuria, S. and Sasmal, S., "Accurate baseline-free damage localization in plates using refined Lamb wave time-reversal method," Smart Materials and Structures, Vol. 29, 2020.
  6. Monaco, E., Boffa, N. D., Memmolo, V., Ricci, F., Testoni, Ni., Marchi, L. D., Marzani, A., Hettler, J., Tabatabaeipour, M., Delrue, S. and Koen, V. D. A., "Methodologies for Guided Wave-Based SHM System Implementation on Composite Wing Panels : Results and Perspective from SARISTU Scenario 5," Smart Intelligent Aircraft Structures(SARISTU), Springer, Switzerland, 2016, pp. 495-527.
  7. Michaels, J. E., "Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors," Smart Material and Structures, Vol. 17, No. 3, 2008, p. 035035. https://doi.org/10.1088/0964-1726/17/3/035035
  8. Su, Z. and Ye, L., Identification of Damage using Lamb Waves From Fundamentals to Applications, Springer, Berlin, 2009, pp. 15-53.
  9. Flynn, E. B., Todd, M. D., Wilcox, P. D., Drinkwater, B. W. and Croxford, A. J., "Maximum-likelihood estimation of damage location in guided-wave structural health monitoring," Proceedings of The Royal Society A, Vol. 467, 2011, pp. 2575-2596. https://doi.org/10.1098/rspa.2011.0095
  10. Ng, C. T. and Veidt, M., "A Lamb-wave-based technique for damage detection in composite laminates," Smart Materials and Structures, Vol. 18, 2009, p. 074006. https://doi.org/10.1088/0964-1726/18/7/074006
  11. Su, C., Jiang, M., Liang, J., Tian, A., Sun, L., Zhang, L., Zhang, F. and Sui, Q., "Damage Localization of Composites Based on Difference Signal and Lamb Wave Tomography," Materials, Vol. 13, No. 218, 2020.
  12. Zhang, H., Hua, J., Gao, F. and Lin, J., "Efficient Lamb-wave based damage imaging using multiple sparse Bayesian learning in composite laminates," NDT&E International, Vol. 116, 2020.
  13. Zeng, L., Huang, L., Luo, Z. and Lin, J., "Damage imaging that exploits multipath scattered Lamb waves," Structural Health Monitoring, Vol. 19, No. 6, 2019, pp. 1629-1644. https://doi.org/10.1177/1475921719892828
  14. Motamed, P. K., Abedian, A. and Nasiri, M., "Optimal sensors layout design based on reference free damage localization with lamb wave propagation," Structural Control Health Monitoring, Vol. 27, No. 4, 2019.
  15. Mei, H., Haider, M. F., Joseph, R., Migot, A. and Giurgiutiu, V., "Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications," Sensors, Vol. 19, No. 383, 2019.
  16. Moix-Bonet, M., Wierach, P., Loendershoot, R. and Bach, M., "Damage Assessment in Composite Structures Based on Acousto-Ultrasonics-Evaluation of Performance," Smart Intelligent Aircraft Structures (SARISTU), Springer, Switzerland, pp. 617-629.
  17. Rebillat, M. and Mechbal, N., "Damage localization in geometrically complex aeronautic structures using canonical polyadic decomposition of Lamb wave difference signal tensors," Structural Health Monitoring, Vol. 19, No. 1, 2019. https://doi.org/10.1177/1475921719840354
  18. Kim, C. S., Jung, Y. G., Park, C. Y., Woo, J. M., Kim, J. H., Cho, J. Y., Jeon, Y. U. and Park, J. S., "Signal Decomposed Method using a correlation of signals in a structure damage detection with Lamb wave," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2018, pp. 741-742.
  19. Lin, M., Qing, X., Kumar, A. and Beard, S. J., "SMART Layer and SMART Suitcase for structural health monitoring applications," Proceedings of the Society of Photo-Optical Instrumentation Engineers, Vol. 4332, 2001, pp. 98-106.