DOI QR코드

DOI QR Code

Construction of a CRISPR/Cas9-Mediated Genome Editing System in Lentinula edodes

  • Moon, Suyun (Department of Biological Sciences and Biotechnology, Chungbuk National University) ;
  • An, Jee Young (AVOCADO BIO Inc) ;
  • Choi, Yeon-Jae (Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Oh, Youn-Lee (Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Ro, Hyeon-Su (Department of Bio & Medical Big Data and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Ryu, Hojin (Department of Biological Sciences and Biotechnology, Chungbuk National University)
  • Received : 2021.06.24
  • Accepted : 2021.11.10
  • Published : 2021.12.31

Abstract

CRISPR/Cas9 genome editing systems have been established in a broad range of eukaryotic species. Herein, we report the first method for genetic engineering in pyogo (shiitake) mushrooms (Lentinula edodes) using CRISPR/Cas9. For in vivo expression of guide RNAs (gRNAs) targeting the mating-type gene HD1 (LeA1), we identified an endogenous LeU6 promoter in the L. edodes genome. We constructed a plasmid containing the LeU6 and glyceraldehyde-3-phosphate dehydrogenase (LeGPD) promoters to express the Cas9 protein. Among the eight gRNAs we tested, three successfully disrupted the LeA1 locus. Although the CRISPR-Cas9-induced alleles did not affect mating with compatible monokaryotic strains, disruption of the transcription levels of the downstream genes of LeHD1 and LeHD2 was detected. Based on this result, we present the first report of a simple and powerful genetic manipulation tool using the CRISPR/Cas9 toolbox for the scientifically and industrially important edible mushroom, L. edodes.

Keywords

Acknowledgement

This work was supported by the AvocadoBio, Inc and Golden Seed Project [Grant No. 213007-05-5-SBH20] from the Ministry of Agriculture, Food and Rural Affairs and the New breeding technologies development Program [Project No. PJ01516501], Rural Development Administration of Republic of Korea.

References

  1. Meyer V. Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv. 2008;26(2):177-185. https://doi.org/10.1016/j.biotechadv.2007.12.001
  2. Nielsen JC, Nielsen J. Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synth Syst Biotechnol. 2017;2(1):5-12. https://doi.org/10.1016/j.synbio.2017.02.002
  3. Xiao Y, Cheng X, Liu J, et al. Population genomic analysis uncovers environmental stress-driven selection and adaptation of Lentinula edodes population in China. Sci Rep. 2016;6:36789. https://doi.org/10.1038/srep36789
  4. Khatodia S, Bhatotia K, Passricha N, et al. The CRISPR/cas genome-editing tool: application in improvement of crops. Front Plant Sci. 2016;7:506.
  5. Yin K, Gao C, Qiu JL. Progress and prospects in plant genome editing. Nat Plants. 2017;3:1-6.
  6. Song R, Zhai Q, Sun L, et al. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Appl Microbiol Biotechnol. 2019;103(17):6919-6932. https://doi.org/10.1007/s00253-019-10007-w
  7. Lee J, Bayarsaikhan D, Bayarsaikhan G, et al. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther. 2020;209:107501. https://doi.org/10.1016/j.pharmthera.2020.107501
  8. Sugano SS, Suzuki H, Shimokita E, et al. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Sci Rep. 2017;7(1):1-9. https://doi.org/10.1038/s41598-016-0028-x
  9. Chen BX, Wei T, Ye ZW, et al. Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris. Front Microbiol. 2018;9:1157. https://doi.org/10.3389/fmicb.2018.01157
  10. Jan Vonk P, Escobar N, Wosten HA, et al. High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using preassembled Cas9 ribonucleoproteins. Sci Rep. 2019;9(1):7632. https://doi.org/10.1038/s41598-019-44133-2
  11. Wang PA, Xiao H, Zhong JJ. CRISPR-Cas9 assisted functional gene editing in the mushroom Ganoderma lucidum. Appl Microbiol Biotechnol. 2020;104(4):1661-1671. https://doi.org/10.1007/s00253-019-10298-z
  12. Wang T, Yue S, Jin Y, et al. Advances allowing feasible pyrG gene editing by a CRISPR-Cas9 system for the edible mushroom Pleurotus eryngii. Fungal Genet Biol. 2021;147:103509. https://doi.org/10.1016/j.fgb.2020.103509
  13. Boontawon T, Nakazawa T, Inoue C, et al. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus. AMB Expr. 2021;11(1):1-11. https://doi.org/10.1186/s13568-020-01157-6
  14. Hong CP, Moon S, Yoo SI, et al. Functional analysis of a novel ABL (abnormal browning related to light) gene in mycelial brown film formation of Lentinula edodes. JoF. 2020;6(4):272. https://doi.org/10.3390/jof6040272
  15. Kim S, Ha B, Kim M, et al. Investigation of mating pheromone-pheromone receptor specificity in Lentinula edodes. Genes. 2020;11(5):506. https://doi.org/10.3390/genes11050506
  16. Shim D, Park SG, Kim K, et al. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol. 2016;223:24-25. https://doi.org/10.1016/j.jbiotec.2016.02.032
  17. Au CH, Wong MC, Bao D, et al. The genetic structure of the a mating-type locus of Lentinula edodes. Gene. 2014;535(2):184-190. https://doi.org/10.1016/j.gene.2013.11.036
  18. Wu L, van Peer A, Song W, et al. Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene. 2013;531(2):270-278. https://doi.org/10.1016/j.gene.2013.08.090
  19. Kothe E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol. 2001;56(5-6):602-612. https://doi.org/10.1007/s002530100763