Acknowledgement
This work was supported by the AvocadoBio, Inc and Golden Seed Project [Grant No. 213007-05-5-SBH20] from the Ministry of Agriculture, Food and Rural Affairs and the New breeding technologies development Program [Project No. PJ01516501], Rural Development Administration of Republic of Korea.
References
- Meyer V. Genetic engineering of filamentous fungi-progress, obstacles and future trends. Biotechnol Adv. 2008;26(2):177-185. https://doi.org/10.1016/j.biotechadv.2007.12.001
- Nielsen JC, Nielsen J. Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synth Syst Biotechnol. 2017;2(1):5-12. https://doi.org/10.1016/j.synbio.2017.02.002
- Xiao Y, Cheng X, Liu J, et al. Population genomic analysis uncovers environmental stress-driven selection and adaptation of Lentinula edodes population in China. Sci Rep. 2016;6:36789. https://doi.org/10.1038/srep36789
- Khatodia S, Bhatotia K, Passricha N, et al. The CRISPR/cas genome-editing tool: application in improvement of crops. Front Plant Sci. 2016;7:506.
- Yin K, Gao C, Qiu JL. Progress and prospects in plant genome editing. Nat Plants. 2017;3:1-6.
- Song R, Zhai Q, Sun L, et al. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Appl Microbiol Biotechnol. 2019;103(17):6919-6932. https://doi.org/10.1007/s00253-019-10007-w
- Lee J, Bayarsaikhan D, Bayarsaikhan G, et al. Recent advances in genome editing of stem cells for drug discovery and therapeutic application. Pharmacol Ther. 2020;209:107501. https://doi.org/10.1016/j.pharmthera.2020.107501
- Sugano SS, Suzuki H, Shimokita E, et al. Genome editing in the mushroom-forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Sci Rep. 2017;7(1):1-9. https://doi.org/10.1038/s41598-016-0028-x
- Chen BX, Wei T, Ye ZW, et al. Efficient CRISPR-Cas9 gene disruption system in edible-medicinal mushroom Cordyceps militaris. Front Microbiol. 2018;9:1157. https://doi.org/10.3389/fmicb.2018.01157
- Jan Vonk P, Escobar N, Wosten HA, et al. High-throughput targeted gene deletion in the model mushroom Schizophyllum commune using preassembled Cas9 ribonucleoproteins. Sci Rep. 2019;9(1):7632. https://doi.org/10.1038/s41598-019-44133-2
- Wang PA, Xiao H, Zhong JJ. CRISPR-Cas9 assisted functional gene editing in the mushroom Ganoderma lucidum. Appl Microbiol Biotechnol. 2020;104(4):1661-1671. https://doi.org/10.1007/s00253-019-10298-z
- Wang T, Yue S, Jin Y, et al. Advances allowing feasible pyrG gene editing by a CRISPR-Cas9 system for the edible mushroom Pleurotus eryngii. Fungal Genet Biol. 2021;147:103509. https://doi.org/10.1016/j.fgb.2020.103509
- Boontawon T, Nakazawa T, Inoue C, et al. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus. AMB Expr. 2021;11(1):1-11. https://doi.org/10.1186/s13568-020-01157-6
- Hong CP, Moon S, Yoo SI, et al. Functional analysis of a novel ABL (abnormal browning related to light) gene in mycelial brown film formation of Lentinula edodes. JoF. 2020;6(4):272. https://doi.org/10.3390/jof6040272
- Kim S, Ha B, Kim M, et al. Investigation of mating pheromone-pheromone receptor specificity in Lentinula edodes. Genes. 2020;11(5):506. https://doi.org/10.3390/genes11050506
- Shim D, Park SG, Kim K, et al. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol. 2016;223:24-25. https://doi.org/10.1016/j.jbiotec.2016.02.032
- Au CH, Wong MC, Bao D, et al. The genetic structure of the a mating-type locus of Lentinula edodes. Gene. 2014;535(2):184-190. https://doi.org/10.1016/j.gene.2013.11.036
- Wu L, van Peer A, Song W, et al. Cloning of the Lentinula edodes B mating-type locus and identification of the genetic structure controlling B mating. Gene. 2013;531(2):270-278. https://doi.org/10.1016/j.gene.2013.08.090
- Kothe E. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl Microbiol Biotechnol. 2001;56(5-6):602-612. https://doi.org/10.1007/s002530100763