DOI QR코드

DOI QR Code

Cranial Nerve Disorders: Clinical Application of High-Resolution Magnetic Resonance Imaging Techniques

  • Lee, Ji Ye (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Park, Hye Min (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Lee, Boeun (Department of Radiology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine) ;
  • Kim, Ji-hoon (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine)
  • Received : 2021.05.27
  • Accepted : 2021.07.05
  • Published : 2021.12.30

Abstract

Cranial-nerve disorders can be caused by a wide spectrum of diseases, including congenital, inflammatory, and tumorous diseases, and are often encountered in practice. However, the imaging of cranial-nerve disorders is challenging, and understanding the anatomical differences of each region is essential for conducting the best protocols and for detecting subtle changes in cranial nerves during magnetic resonance imaging (MRI) examinations. In this review we discuss which MRI techniques are best for observing normal and pathologic appearance, according to the different regions of the cranial nerves.

Keywords

References

  1. Blitz AM, Choudhri AF, Chonka ZD, et al. Anatomic considerations, nomenclature, and advanced cross-sectional imaging techniques for visualization of the cranial nerve segments by MR imaging. Neuroimaging Clin N Am 2014;24:1-15 https://doi.org/10.1016/j.nic.2013.03.020
  2. Casselman J, Mermuys K, Delanote J, Ghekiere J, Coenegrachts K. MRI of the cranial nerves--more than meets the eye: technical considerations and advanced anatomy. Neuroimaging Clin N Am 2008;18:197-231, preceding x https://doi.org/10.1016/j.nic.2008.02.002
  3. Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 2015;42:887-901 https://doi.org/10.1002/jmri.24850
  4. Romano N, Federici M, Castaldi A. Imaging of cranial nerves: a pictorial overview. Insights Imaging 2019;10:33 https://doi.org/10.1186/s13244-019-0719-5
  5. Kim HJ, Seong M, Kim Y. Normal anatomy of cranial nerves III-XII on magnetic resonance imaging. J Korean Soc Radiol 2020;81:501-529 https://doi.org/10.3348/jksr.2020.81.3.501
  6. Kim TK, Kim HY, Yu IK, Son H-j, Chang DS, Jang YD. Schwannoma of the tongue base with imaging features and differential diagnosis: a rare case report and literature review. Investig Magn Reson Imaging 2019;23:385-389 https://doi.org/10.13104/imri.2019.23.4.385
  7. Seo M, Choi Y, Lee S, et al. Diagnostic value of susceptibility-weighted MRI in differentiating cerebellopontine angle schwannoma from meningioma. Investig Magn Reson Imaging 2020;24:38-45 https://doi.org/10.13104/imri.2020.24.1.38
  8. Yousry I, Camelio S, Schmid UD, et al. Visualization of cranial nerves I-XII: value of 3D CISS and T2-weighted FSE sequences. Eur Radiol 2000;10:1061-1067 https://doi.org/10.1007/s003300000452
  9. Choi BS, Kim JH, Jung C, Hwang JM. High-resolution 3D MR imaging of the trochlear nerve. AJNR Am J Neuroradiol 2010;31:1076-1079 https://doi.org/10.3174/ajnr.A1992
  10. Cho SJ, Choi YJ, Chung SR, Lee JH, Baek JH. High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: comparison with the conventional SENSE parallel acquisition technique. Clin Radiol 2019;74:817 e819-817 e814
  11. Tsao J, Kozerke S. MRI temporal acceleration techniques. J Magn Reson Imaging 2012;36:543-560 https://doi.org/10.1002/jmri.23640
  12. Moon WJ, Roh HG, Chung EC. Detailed MR imaging anatomy of the cisternal segments of the glossopharyngeal, vagus, and spinal accessory nerves in the posterior fossa: the use of 3D balanced fast-field echo MR imaging. AJNR Am J Neuroradiol 2009;30:1116-1120 https://doi.org/10.3174/ajnr.A1525
  13. Chavhan GB, Babyn PS, Jankharia BG, Cheng HL, Shroff MM. Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics 2008;28:1147-1160 https://doi.org/10.1148/rg.284075031
  14. Ciftci E, Anik Y, Arslan A, Akansel G, Sarisoy T, Demirci A. Driven equilibrium (drive) MR imaging of the cranial nerves V-VIII: comparison with the T2-weighted 3D TSE sequence. Eur J Radiol 2004;51:234-240 https://doi.org/10.1016/j.ejrad.2003.10.019
  15. Sheth S, Branstetter BF 4th, Escott EJ. Appearance of normal cranial nerves on steady-state free precession MR images. Radiographics 2009;29:1045-1055 https://doi.org/10.1148/rg.294085743
  16. Touska P, Connor SEJ. Recent advances in MRI of the head and neck, skull base and cranial nerves: new and evolving sequences, analyses and clinical applications. Br J Radiol 2019;92:20190513 https://doi.org/10.1259/bjr.20190513
  17. Kojima S, Suzuki K, Hirata M, Shinohara H, Ueno E. Depicting the semicircular canals with inner-ear MRI: a comparison of the SPACE and TrueFISP sequences. J Magn Reson Imaging 2013;37:652-659 https://doi.org/10.1002/jmri.23863
  18. Lane JI, Witte RJ, Bolster B, Bernstein MA, Johnson K, Morris J. State of the art: 3T imaging of the membranous labyrinth. AJNR Am J Neuroradiol 2008;29:1436-1440 https://doi.org/10.3174/ajnr.A1036
  19. Connor SEJ, Dudau C, Pai I, Gaganasiou M. Is CT or MRI the optimal imaging investigation for the diagnosis of large vestibular aqueduct syndrome and large endolymphatic sac anomaly? Eur Arch Otorhinolaryngol 2019;276:693-702 https://doi.org/10.1007/s00405-019-05279-x
  20. Reinshagen KL, Curtin HD, Quesnel AM, Juliano AF. Measurement for detection of incomplete partition type II anomalies on MR imaging. AJNR Am J Neuroradiol 2017;38:2003-2007 https://doi.org/10.3174/ajnr.A5335
  21. Isaacson B, Booth T, Kutz JW Jr, Lee KH, Roland PS. Labyrinthitis ossificans: how accurate is MRI in predicting cochlear obstruction? Otolaryngol Head Neck Surg 2009;140:692-696 https://doi.org/10.1016/j.otohns.2008.12.029
  22. Salzman KL, Childs AM, Davidson HC, Kennedy RJ, Shelton C, Harnsberger HR. Intralabyrinthine schwannomas: imaging diagnosis and classification. AJNR Am J Neuroradiol 2012;33:104-109 https://doi.org/10.3174/ajnr.A2712
  23. Tamplen M, Schwalje A, Lustig L, Alemi AS, Miller ME. Utility of preoperative computed tomography and magnetic resonance imaging in adult and pediatric cochlear implant candidates. Laryngoscope 2016;126:1440-1445 https://doi.org/10.1002/lary.25659
  24. Walton J, Gibson WP, Sanli H, Prelog K. Predicting cochlear implant outcomes in children with auditory neuropathy. Otol Neurotol 2008;29:302-309 https://doi.org/10.1097/MAO.0b013e318164d0f6
  25. Haller S, Etienne L, Kovari E, Varoquaux AD, Urbach H, Becker M. Imaging of neurovascular compression syndromes: trigeminal neuralgia, hemifacial spasm, vestibular paroxysmia, and glossopharyngeal neuralgia. AJNR Am J Neuroradiol 2016;37:1384-1392 https://doi.org/10.3174/ajnr.A4683
  26. Hughes MA, Branstetter BF, Taylor CT, et al. MRI findings in patients with a history of failed prior microvascular decompression for hemifacial spasm: how to image and where to look. AJNR Am J Neuroradiol 2015;36:768-773 https://doi.org/10.3174/ajnr.A4174
  27. Hughes MA, Frederickson AM, Branstetter BF, Zhu X, Sekula RF Jr. MRI of the trigeminal nerve in patients with trigeminal neuralgia secondary to vascular compression. AJR Am J Roentgenol 2016;206:595-600 https://doi.org/10.2214/AJR.14.14156
  28. Sivarasan N, Touska P, Murdin L, Connor S. MRI findings in vestibular paroxysmia - an observational study. J Vestib Res 2019;29:137-145 https://doi.org/10.3233/ves-190661
  29. Holmes JM, Mutyala S, Maus TL, Grill R, Hodge DO, Gray DT. Pediatric third, fourth, and sixth nerve palsies: a population-based study. Am J Ophthalmol 1999;127:388-392 https://doi.org/10.1016/S0002-9394(98)00424-3
  30. Kim JH, Hwang JM. Usefulness of MR imaging in children without characteristic clinical findings of Duane's retraction syndrome. AJNR Am J Neuroradiol 2005;26:702-705
  31. Williams LS, Schmalfuss IM, Sistrom CL, et al. MR imaging of the trigeminal ganglion, nerve, and the perineural vascular plexus: normal appearance and variants with correlation to cadaver specimens. AJNR Am J Neuroradiol 2003;24:1317-1323
  32. Barkhof F, Pouwels PJ, Wattjes MP. The Holy Grail in diagnostic neuroradiology: 3T or 3D? Eur Radiol 2011;21:449-456 https://doi.org/10.1007/s00330-010-2034-x
  33. Ahn SS, Kim J, An C, et al. Preoperative imaging evaluation of head and neck cancer: comparison of 2D spin-echo and 3D THRIVE MRI techniques with resected tumours. Clin Radiol 2012;67:e98-e104 https://doi.org/10.1016/j.crad.2012.08.017
  34. Mugler JP 3rd. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014;39:745-767 https://doi.org/10.1002/jmri.24542
  35. Kato Y, Higano S, Tamura H, et al. Usefulness of contrast-enhanced T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions in detection of small brain metastasis at 3T MR imaging: comparison with magnetization-prepared rapid acquisition of gradient echo imaging. AJNR Am J Neuroradiol 2009;30:923-929 https://doi.org/10.3174/ajnr.A1506
  36. Yagi A, Sato N, Taketomi A, et al. Normal cranial nerves in the cavernous sinuses: contrast-enhanced three-dimensional constructive interference in the steady state MR imaging. AJNR Am J Neuroradiol 2005;26:946-950
  37. Blitz AM, Macedo LL, Chonka ZD, et al. High-resolution CISS MR imaging with and without contrast for evaluation of the upper cranial nerves: segmental anatomy and selected pathologic conditions of the cisternal through extraforaminal segments. Neuroimaging Clin N Am 2014;24:17-34 https://doi.org/10.1016/j.nic.2013.03.021
  38. Hong HS, Yi BH, Cha JG, et al. Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. Br J Radiol 2010;83:118-121 https://doi.org/10.1259/bjr/70067143
  39. Kinoshita T, Ishii K, Okitsu T, Okudera T, Ogawa T. Facial nerve palsy: evaluation by contrast-enhanced MR imaging. Clin Radiol 2001;56:926-932 https://doi.org/10.1053/crad.2001.0730
  40. Fujii H, Fujita A, Kanazawa H, Sung E, Sakai O, Sugimoto H. Localization of parotid gland tumors in relation to the intraparotid facial nerve on 3D double-echo steady-state with water excitation sequence. AJNR Am J Neuroradiol 2019;40:1037-1042 https://doi.org/10.3174/ajnr.A6078
  41. Fujii H, Fujita A, Yang A, et al. Visualization of the peripheral branches of the mandibular division of the trigeminal nerve on 3D double-echo steady-state with water excitation sequence. AJNR Am J Neuroradiol 2015;36:1333-1337 https://doi.org/10.3174/ajnr.A4288
  42. Qin Y, Zhang J, Li P, Wang Y. 3D double-echo steady-state with water excitation MR imaging of the intraparotid facial nerve at 1.5T: a pilot study. AJNR Am J Neuroradiol 2011;32:1167-1172 https://doi.org/10.3174/ajnr.A2480
  43. Chu J, Zhou Z, Hong G, et al. High-resolution MRI of the intraparotid facial nerve based on a microsurface coil and a 3D reversed fast imaging with steady-state precession DWI sequence at 3T. AJNR Am J Neuroradiol 2013;34:1643-1648 https://doi.org/10.3174/ajnr.A3472
  44. Naganawa S, Ishihara S, Satake H, Kawai H, Sone M, Nakashima T. Simultaneous three-dimensional visualization of the intra-parotid facial nerve and parotid duct using a three-dimensional reversed FISP sequence with diffusion weighting. Magn Reson Med Sci 2010;9:153-158 https://doi.org/10.2463/mrms.9.153
  45. Gebarski SS, Telian SA, Niparko JK. Enhancement along the normal facial nerve in the facial canal: MR imaging and anatomic correlation. Radiology 1992;183:391-394 https://doi.org/10.1148/radiology.183.2.1561339
  46. Deliganis AV, Fisher DJ, Lam AM, Maravilla KR. Cerebrospinal fluid signal intensity increase on FLAIR MR images in patients under general anesthesia: the role of supplemental O2. Radiology 2001;218:152-156 https://doi.org/10.1148/radiology.218.1.r01ja43152
  47. Maeda M, Tsuchida C. "Ivy sign" on fluid-attenuated inversion-recovery images in childhood moyamoya disease. AJNR Am J Neuroradiol 1999;20:1836-1838
  48. Fukuoka H, Hirai T, Okuda T, et al. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T. AJNR Am J Neuroradiol 2010;31:868-873 https://doi.org/10.3174/ajnr.A1937
  49. Kallmes DF, Hui FK, Mugler JP 3rd. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience. Radiology 2001;221:251-255 https://doi.org/10.1148/radiol.2211001712
  50. Naganawa S, Koshikawa T, Nakamura T, et al. Comparison of flow artifacts between 2D-FLAIR and 3D-FLAIR sequences at 3 T. Eur Radiol 2004;14:1901-1908
  51. Lim HK, Lee JH, Hyun D, et al. MR diagnosis of facial neuritis: diagnostic performance of contrast-enhanced 3D-FLAIR technique compared with contrast-enhanced 3D-T1-fast-field echo with fat suppression. AJNR Am J Neuroradiol 2012;33:779-783 https://doi.org/10.3174/ajnr.A2851
  52. Byun H, Chung JH, Lee SH, Park CW, Park DW, Kim TY. Clinical value of 4-hour delayed gadolinium-enhanced 3D FLAIR MR images in acute vestibular neuritis. Laryngoscope 2018;128:1946-1951 https://doi.org/10.1002/lary.27084
  53. Venkatasamy A, Huynh TT, Wohlhuter N, et al. Superior vestibular neuritis: improved detection using FLAIR sequence with delayed enhancement (1 h). Eur Arch Otorhinolaryngol 2019;276:3309-3316 https://doi.org/10.1007/s00405-019-05639-7
  54. Chung MS, Lee JH, Kim DY, et al. The clinical significance of findings obtained on 3D-FLAIR MR imaging in patients with Ramsay-Hunt syndrome. Laryngoscope 2015;125:950-955 https://doi.org/10.1002/lary.24973
  55. Lee B, Lee JH, Lim YM, et al. High-resolution MR imaging of cranial neuropathy in patients with anti-GQ1b antibody syndrome. J Neurol Sci 2021;423:117380 https://doi.org/10.1016/j.jns.2021.117380
  56. Eliezer M, Maquet C, Horion J, et al. Detection of intralabyrinthine abnormalities using post-contrast delayed 3D-FLAIR MRI sequences in patients with acute vestibular syndrome. Eur Radiol 2019;29:2760-2769 https://doi.org/10.1007/s00330-018-5825-0
  57. Lee JW, Park YA, Park SM, et al. Clinical features and prognosis of sudden sensorineural hearing loss secondary to intralabyrinthine hemorrhage. J Audiol Otol 2016;20:31-35 https://doi.org/10.7874/jao.2016.20.1.31
  58. Gao Z, Chi FL. The clinical value of three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging in patients with idiopathic sudden sensorineural hearing loss: a meta-analysis. Otol Neurotol 2014;35:1730-1735 https://doi.org/10.1097/MAO.0000000000000611
  59. Naganawa S, Kawai H, Taoka T, et al. Heavily T(2)-weighted 3D-FLAIR improves the detection of cochlear lymph fluid signal abnormalities in patients with sudden sensorineural hearing loss. Magn Reson Med Sci 2016;15:203-211 https://doi.org/10.2463/mrms.mp.2015-0065
  60. Attye A, Eliezer M, Boudiaf N, et al. MRI of endolymphatic hydrops in patients with Meniere's disease: a case-controlled study with a simplified classification based on saccular morphology. Eur Radiol 2017;27:3138-3146 https://doi.org/10.1007/s00330-016-4701-z
  61. Nakashima T, Naganawa S, Sugiura M, et al. Visualization of endolymphatic hydrops in patients with Meniere's disease. Laryngoscope 2007;117:415-420 https://doi.org/10.1097/MLG.0b013e31802c300c
  62. Barath K, Schuknecht B, Naldi AM, Schrepfer T, Bockisch CJ, Hegemann SC. Detection and grading of endolymphatic hydrops in Meniere disease using MR imaging. AJNR Am J Neuroradiol 2014;35:1387-1392 https://doi.org/10.3174/ajnr.A3856
  63. Aja-Fernandez S, Vegas-Sanchez-Ferrero G, Tristan-Vega A. Noise estimation in parallel MRI: GRAPPA and SENSE. Magn Reson Imaging 2014;32:281-290 https://doi.org/10.1016/j.mri.2013.12.001
  64. Petr J, Kybic J, Bock M, Muller S, Hlavac V. Parallel image reconstruction using B-spline approximation (PROBER). Magn Reson Med 2007;58:582-591 https://doi.org/10.1002/mrm.21366
  65. Suh CH, Jung SC, Lee HB, Cho SJ. High-resolution magnetic resonance imaging using compressed sensing for intracranial and extracranial arteries: comparison with conventional parallel imaging. Korean J Radiol 2019;20:487-497 https://doi.org/10.3348/kjr.2018.0424
  66. Toledano-Massiah S, Sayadi A, de Boer R, et al. Accuracy of the compressed sensing accelerated 3D-FLAIR sequence for the detection of MS plaques at 3T. AJNR Am J Neuroradiol 2018;39:454-458 https://doi.org/10.3174/ajnr.A5517
  67. Eichinger P, Hock A, Schon S, et al. Acceleration of double inversion recovery sequences in multiple sclerosis with compressed sensing. Invest Radiol 2019;54:319-324 https://doi.org/10.1097/rli.0000000000000550