참고문헌
- Blitz AM, Choudhri AF, Chonka ZD, et al. Anatomic considerations, nomenclature, and advanced cross-sectional imaging techniques for visualization of the cranial nerve segments by MR imaging. Neuroimaging Clin N Am 2014;24:1-15 https://doi.org/10.1016/j.nic.2013.03.020
- Casselman J, Mermuys K, Delanote J, Ghekiere J, Coenegrachts K. MRI of the cranial nerves--more than meets the eye: technical considerations and advanced anatomy. Neuroimaging Clin N Am 2008;18:197-231, preceding x https://doi.org/10.1016/j.nic.2008.02.002
- Zaitsev M, Maclaren J, Herbst M. Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 2015;42:887-901 https://doi.org/10.1002/jmri.24850
- Romano N, Federici M, Castaldi A. Imaging of cranial nerves: a pictorial overview. Insights Imaging 2019;10:33 https://doi.org/10.1186/s13244-019-0719-5
- Kim HJ, Seong M, Kim Y. Normal anatomy of cranial nerves III-XII on magnetic resonance imaging. J Korean Soc Radiol 2020;81:501-529 https://doi.org/10.3348/jksr.2020.81.3.501
- Kim TK, Kim HY, Yu IK, Son H-j, Chang DS, Jang YD. Schwannoma of the tongue base with imaging features and differential diagnosis: a rare case report and literature review. Investig Magn Reson Imaging 2019;23:385-389 https://doi.org/10.13104/imri.2019.23.4.385
- Seo M, Choi Y, Lee S, et al. Diagnostic value of susceptibility-weighted MRI in differentiating cerebellopontine angle schwannoma from meningioma. Investig Magn Reson Imaging 2020;24:38-45 https://doi.org/10.13104/imri.2020.24.1.38
- Yousry I, Camelio S, Schmid UD, et al. Visualization of cranial nerves I-XII: value of 3D CISS and T2-weighted FSE sequences. Eur Radiol 2000;10:1061-1067 https://doi.org/10.1007/s003300000452
- Choi BS, Kim JH, Jung C, Hwang JM. High-resolution 3D MR imaging of the trochlear nerve. AJNR Am J Neuroradiol 2010;31:1076-1079 https://doi.org/10.3174/ajnr.A1992
- Cho SJ, Choi YJ, Chung SR, Lee JH, Baek JH. High-resolution MRI using compressed sensing-sensitivity encoding (CS-SENSE) for patients with suspected neurovascular compression syndrome: comparison with the conventional SENSE parallel acquisition technique. Clin Radiol 2019;74:817 e819-817 e814
- Tsao J, Kozerke S. MRI temporal acceleration techniques. J Magn Reson Imaging 2012;36:543-560 https://doi.org/10.1002/jmri.23640
- Moon WJ, Roh HG, Chung EC. Detailed MR imaging anatomy of the cisternal segments of the glossopharyngeal, vagus, and spinal accessory nerves in the posterior fossa: the use of 3D balanced fast-field echo MR imaging. AJNR Am J Neuroradiol 2009;30:1116-1120 https://doi.org/10.3174/ajnr.A1525
- Chavhan GB, Babyn PS, Jankharia BG, Cheng HL, Shroff MM. Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics 2008;28:1147-1160 https://doi.org/10.1148/rg.284075031
- Ciftci E, Anik Y, Arslan A, Akansel G, Sarisoy T, Demirci A. Driven equilibrium (drive) MR imaging of the cranial nerves V-VIII: comparison with the T2-weighted 3D TSE sequence. Eur J Radiol 2004;51:234-240 https://doi.org/10.1016/j.ejrad.2003.10.019
- Sheth S, Branstetter BF 4th, Escott EJ. Appearance of normal cranial nerves on steady-state free precession MR images. Radiographics 2009;29:1045-1055 https://doi.org/10.1148/rg.294085743
- Touska P, Connor SEJ. Recent advances in MRI of the head and neck, skull base and cranial nerves: new and evolving sequences, analyses and clinical applications. Br J Radiol 2019;92:20190513 https://doi.org/10.1259/bjr.20190513
- Kojima S, Suzuki K, Hirata M, Shinohara H, Ueno E. Depicting the semicircular canals with inner-ear MRI: a comparison of the SPACE and TrueFISP sequences. J Magn Reson Imaging 2013;37:652-659 https://doi.org/10.1002/jmri.23863
- Lane JI, Witte RJ, Bolster B, Bernstein MA, Johnson K, Morris J. State of the art: 3T imaging of the membranous labyrinth. AJNR Am J Neuroradiol 2008;29:1436-1440 https://doi.org/10.3174/ajnr.A1036
- Connor SEJ, Dudau C, Pai I, Gaganasiou M. Is CT or MRI the optimal imaging investigation for the diagnosis of large vestibular aqueduct syndrome and large endolymphatic sac anomaly? Eur Arch Otorhinolaryngol 2019;276:693-702 https://doi.org/10.1007/s00405-019-05279-x
- Reinshagen KL, Curtin HD, Quesnel AM, Juliano AF. Measurement for detection of incomplete partition type II anomalies on MR imaging. AJNR Am J Neuroradiol 2017;38:2003-2007 https://doi.org/10.3174/ajnr.A5335
- Isaacson B, Booth T, Kutz JW Jr, Lee KH, Roland PS. Labyrinthitis ossificans: how accurate is MRI in predicting cochlear obstruction? Otolaryngol Head Neck Surg 2009;140:692-696 https://doi.org/10.1016/j.otohns.2008.12.029
- Salzman KL, Childs AM, Davidson HC, Kennedy RJ, Shelton C, Harnsberger HR. Intralabyrinthine schwannomas: imaging diagnosis and classification. AJNR Am J Neuroradiol 2012;33:104-109 https://doi.org/10.3174/ajnr.A2712
- Tamplen M, Schwalje A, Lustig L, Alemi AS, Miller ME. Utility of preoperative computed tomography and magnetic resonance imaging in adult and pediatric cochlear implant candidates. Laryngoscope 2016;126:1440-1445 https://doi.org/10.1002/lary.25659
- Walton J, Gibson WP, Sanli H, Prelog K. Predicting cochlear implant outcomes in children with auditory neuropathy. Otol Neurotol 2008;29:302-309 https://doi.org/10.1097/MAO.0b013e318164d0f6
- Haller S, Etienne L, Kovari E, Varoquaux AD, Urbach H, Becker M. Imaging of neurovascular compression syndromes: trigeminal neuralgia, hemifacial spasm, vestibular paroxysmia, and glossopharyngeal neuralgia. AJNR Am J Neuroradiol 2016;37:1384-1392 https://doi.org/10.3174/ajnr.A4683
- Hughes MA, Branstetter BF, Taylor CT, et al. MRI findings in patients with a history of failed prior microvascular decompression for hemifacial spasm: how to image and where to look. AJNR Am J Neuroradiol 2015;36:768-773 https://doi.org/10.3174/ajnr.A4174
- Hughes MA, Frederickson AM, Branstetter BF, Zhu X, Sekula RF Jr. MRI of the trigeminal nerve in patients with trigeminal neuralgia secondary to vascular compression. AJR Am J Roentgenol 2016;206:595-600 https://doi.org/10.2214/AJR.14.14156
- Sivarasan N, Touska P, Murdin L, Connor S. MRI findings in vestibular paroxysmia - an observational study. J Vestib Res 2019;29:137-145 https://doi.org/10.3233/ves-190661
- Holmes JM, Mutyala S, Maus TL, Grill R, Hodge DO, Gray DT. Pediatric third, fourth, and sixth nerve palsies: a population-based study. Am J Ophthalmol 1999;127:388-392 https://doi.org/10.1016/S0002-9394(98)00424-3
- Kim JH, Hwang JM. Usefulness of MR imaging in children without characteristic clinical findings of Duane's retraction syndrome. AJNR Am J Neuroradiol 2005;26:702-705
- Williams LS, Schmalfuss IM, Sistrom CL, et al. MR imaging of the trigeminal ganglion, nerve, and the perineural vascular plexus: normal appearance and variants with correlation to cadaver specimens. AJNR Am J Neuroradiol 2003;24:1317-1323
- Barkhof F, Pouwels PJ, Wattjes MP. The Holy Grail in diagnostic neuroradiology: 3T or 3D? Eur Radiol 2011;21:449-456 https://doi.org/10.1007/s00330-010-2034-x
- Ahn SS, Kim J, An C, et al. Preoperative imaging evaluation of head and neck cancer: comparison of 2D spin-echo and 3D THRIVE MRI techniques with resected tumours. Clin Radiol 2012;67:e98-e104 https://doi.org/10.1016/j.crad.2012.08.017
- Mugler JP 3rd. Optimized three-dimensional fast-spin-echo MRI. J Magn Reson Imaging 2014;39:745-767 https://doi.org/10.1002/jmri.24542
- Kato Y, Higano S, Tamura H, et al. Usefulness of contrast-enhanced T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions in detection of small brain metastasis at 3T MR imaging: comparison with magnetization-prepared rapid acquisition of gradient echo imaging. AJNR Am J Neuroradiol 2009;30:923-929 https://doi.org/10.3174/ajnr.A1506
- Yagi A, Sato N, Taketomi A, et al. Normal cranial nerves in the cavernous sinuses: contrast-enhanced three-dimensional constructive interference in the steady state MR imaging. AJNR Am J Neuroradiol 2005;26:946-950
- Blitz AM, Macedo LL, Chonka ZD, et al. High-resolution CISS MR imaging with and without contrast for evaluation of the upper cranial nerves: segmental anatomy and selected pathologic conditions of the cisternal through extraforaminal segments. Neuroimaging Clin N Am 2014;24:17-34 https://doi.org/10.1016/j.nic.2013.03.021
- Hong HS, Yi BH, Cha JG, et al. Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. Br J Radiol 2010;83:118-121 https://doi.org/10.1259/bjr/70067143
- Kinoshita T, Ishii K, Okitsu T, Okudera T, Ogawa T. Facial nerve palsy: evaluation by contrast-enhanced MR imaging. Clin Radiol 2001;56:926-932 https://doi.org/10.1053/crad.2001.0730
- Fujii H, Fujita A, Kanazawa H, Sung E, Sakai O, Sugimoto H. Localization of parotid gland tumors in relation to the intraparotid facial nerve on 3D double-echo steady-state with water excitation sequence. AJNR Am J Neuroradiol 2019;40:1037-1042 https://doi.org/10.3174/ajnr.A6078
- Fujii H, Fujita A, Yang A, et al. Visualization of the peripheral branches of the mandibular division of the trigeminal nerve on 3D double-echo steady-state with water excitation sequence. AJNR Am J Neuroradiol 2015;36:1333-1337 https://doi.org/10.3174/ajnr.A4288
- Qin Y, Zhang J, Li P, Wang Y. 3D double-echo steady-state with water excitation MR imaging of the intraparotid facial nerve at 1.5T: a pilot study. AJNR Am J Neuroradiol 2011;32:1167-1172 https://doi.org/10.3174/ajnr.A2480
- Chu J, Zhou Z, Hong G, et al. High-resolution MRI of the intraparotid facial nerve based on a microsurface coil and a 3D reversed fast imaging with steady-state precession DWI sequence at 3T. AJNR Am J Neuroradiol 2013;34:1643-1648 https://doi.org/10.3174/ajnr.A3472
- Naganawa S, Ishihara S, Satake H, Kawai H, Sone M, Nakashima T. Simultaneous three-dimensional visualization of the intra-parotid facial nerve and parotid duct using a three-dimensional reversed FISP sequence with diffusion weighting. Magn Reson Med Sci 2010;9:153-158 https://doi.org/10.2463/mrms.9.153
- Gebarski SS, Telian SA, Niparko JK. Enhancement along the normal facial nerve in the facial canal: MR imaging and anatomic correlation. Radiology 1992;183:391-394 https://doi.org/10.1148/radiology.183.2.1561339
- Deliganis AV, Fisher DJ, Lam AM, Maravilla KR. Cerebrospinal fluid signal intensity increase on FLAIR MR images in patients under general anesthesia: the role of supplemental O2. Radiology 2001;218:152-156 https://doi.org/10.1148/radiology.218.1.r01ja43152
- Maeda M, Tsuchida C. "Ivy sign" on fluid-attenuated inversion-recovery images in childhood moyamoya disease. AJNR Am J Neuroradiol 1999;20:1836-1838
- Fukuoka H, Hirai T, Okuda T, et al. Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T. AJNR Am J Neuroradiol 2010;31:868-873 https://doi.org/10.3174/ajnr.A1937
- Kallmes DF, Hui FK, Mugler JP 3rd. Suppression of cerebrospinal fluid and blood flow artifacts in FLAIR MR imaging with a single-slab three-dimensional pulse sequence: initial experience. Radiology 2001;221:251-255 https://doi.org/10.1148/radiol.2211001712
- Naganawa S, Koshikawa T, Nakamura T, et al. Comparison of flow artifacts between 2D-FLAIR and 3D-FLAIR sequences at 3 T. Eur Radiol 2004;14:1901-1908
- Lim HK, Lee JH, Hyun D, et al. MR diagnosis of facial neuritis: diagnostic performance of contrast-enhanced 3D-FLAIR technique compared with contrast-enhanced 3D-T1-fast-field echo with fat suppression. AJNR Am J Neuroradiol 2012;33:779-783 https://doi.org/10.3174/ajnr.A2851
- Byun H, Chung JH, Lee SH, Park CW, Park DW, Kim TY. Clinical value of 4-hour delayed gadolinium-enhanced 3D FLAIR MR images in acute vestibular neuritis. Laryngoscope 2018;128:1946-1951 https://doi.org/10.1002/lary.27084
- Venkatasamy A, Huynh TT, Wohlhuter N, et al. Superior vestibular neuritis: improved detection using FLAIR sequence with delayed enhancement (1 h). Eur Arch Otorhinolaryngol 2019;276:3309-3316 https://doi.org/10.1007/s00405-019-05639-7
- Chung MS, Lee JH, Kim DY, et al. The clinical significance of findings obtained on 3D-FLAIR MR imaging in patients with Ramsay-Hunt syndrome. Laryngoscope 2015;125:950-955 https://doi.org/10.1002/lary.24973
- Lee B, Lee JH, Lim YM, et al. High-resolution MR imaging of cranial neuropathy in patients with anti-GQ1b antibody syndrome. J Neurol Sci 2021;423:117380 https://doi.org/10.1016/j.jns.2021.117380
- Eliezer M, Maquet C, Horion J, et al. Detection of intralabyrinthine abnormalities using post-contrast delayed 3D-FLAIR MRI sequences in patients with acute vestibular syndrome. Eur Radiol 2019;29:2760-2769 https://doi.org/10.1007/s00330-018-5825-0
- Lee JW, Park YA, Park SM, et al. Clinical features and prognosis of sudden sensorineural hearing loss secondary to intralabyrinthine hemorrhage. J Audiol Otol 2016;20:31-35 https://doi.org/10.7874/jao.2016.20.1.31
- Gao Z, Chi FL. The clinical value of three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging in patients with idiopathic sudden sensorineural hearing loss: a meta-analysis. Otol Neurotol 2014;35:1730-1735 https://doi.org/10.1097/MAO.0000000000000611
- Naganawa S, Kawai H, Taoka T, et al. Heavily T(2)-weighted 3D-FLAIR improves the detection of cochlear lymph fluid signal abnormalities in patients with sudden sensorineural hearing loss. Magn Reson Med Sci 2016;15:203-211 https://doi.org/10.2463/mrms.mp.2015-0065
- Attye A, Eliezer M, Boudiaf N, et al. MRI of endolymphatic hydrops in patients with Meniere's disease: a case-controlled study with a simplified classification based on saccular morphology. Eur Radiol 2017;27:3138-3146 https://doi.org/10.1007/s00330-016-4701-z
- Nakashima T, Naganawa S, Sugiura M, et al. Visualization of endolymphatic hydrops in patients with Meniere's disease. Laryngoscope 2007;117:415-420 https://doi.org/10.1097/MLG.0b013e31802c300c
- Barath K, Schuknecht B, Naldi AM, Schrepfer T, Bockisch CJ, Hegemann SC. Detection and grading of endolymphatic hydrops in Meniere disease using MR imaging. AJNR Am J Neuroradiol 2014;35:1387-1392 https://doi.org/10.3174/ajnr.A3856
- Aja-Fernandez S, Vegas-Sanchez-Ferrero G, Tristan-Vega A. Noise estimation in parallel MRI: GRAPPA and SENSE. Magn Reson Imaging 2014;32:281-290 https://doi.org/10.1016/j.mri.2013.12.001
- Petr J, Kybic J, Bock M, Muller S, Hlavac V. Parallel image reconstruction using B-spline approximation (PROBER). Magn Reson Med 2007;58:582-591 https://doi.org/10.1002/mrm.21366
- Suh CH, Jung SC, Lee HB, Cho SJ. High-resolution magnetic resonance imaging using compressed sensing for intracranial and extracranial arteries: comparison with conventional parallel imaging. Korean J Radiol 2019;20:487-497 https://doi.org/10.3348/kjr.2018.0424
- Toledano-Massiah S, Sayadi A, de Boer R, et al. Accuracy of the compressed sensing accelerated 3D-FLAIR sequence for the detection of MS plaques at 3T. AJNR Am J Neuroradiol 2018;39:454-458 https://doi.org/10.3174/ajnr.A5517
- Eichinger P, Hock A, Schon S, et al. Acceleration of double inversion recovery sequences in multiple sclerosis with compressed sensing. Invest Radiol 2019;54:319-324 https://doi.org/10.1097/rli.0000000000000550