Acknowledgement
This work was supported partly by the National Natural Science Foundation of China (61771463, 81830056, U1805261, 81971611, 61871373, 81729003, 81901736), National Key R&D Program of China (2017YFC0108802 and 2017YFC0112903), Natural Science Foundation of Guangdong Province (2018A0303130132), Shenzhen Peacock Plan Team Program (KQTD20180413181834876), Innovation and Technology Commission of the government of Hong Kong SAR (MRP/001/18X), Strategic Priority Research Program of Chinese Academy of Sciences (XDB25000000), China Postdoctoral Science Foundation (2021M693316), and SIAT Innovation Program for Excellent Young Researchers (E1G031).
References
- MacKay A, Whittall K, Adler J, Li D, Paty D, Graeb D. In vivo visualization of myelin water in brain by magnetic resonance. Magn Reson Med 1994;31:673-677 https://doi.org/10.1002/mrm.1910310614
- Sibley CT, Noureldin RA, Gai N, et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology 2012;265:724-732 https://doi.org/10.1148/radiol.12112721
- Duvvuri U, Charagundla SR, Kudchodkar SB, et al. Human knee: in vivo T1(rho)-weighted MR imaging at 1.5 T-- preliminary experience. Radiology 2001;220:822-826 https://doi.org/10.1148/radiol.2203001662
- Regatte RR, Akella SV, Lonner JH, Kneeland JB, Reddy R. T1rho relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T1rho with T2. J Magn Reson Imaging 2006;23:547-553 https://doi.org/10.1002/jmri.20536
- Petzschner FH, Ponce IP, Blaimer M, Jakob PM, Breuer FA. Fast MR parameter mapping using k-t principal component analysis. Magn Reson Med 2011;66:706-716 https://doi.org/10.1002/mrm.22826
- Velikina JV, Alexander AL, Samsonov A. Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension. Magn Reson Med 2013;70:1263-1273 https://doi.org/10.1002/mrm.24577
- Zhou Y, Pandit P, Pedoia V, et al. Accelerating T1rho cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE. Magn Reson Med 2016;75:1617-1629 https://doi.org/10.1002/mrm.25773
- Pandit P, Rivoire J, King K, Li X. Accelerated T1rho acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: a feasibility study. Magn Reson Med 2016;75:1256-1261 https://doi.org/10.1002/mrm.25702
- Pedersen H, Kozerke S, Ringgaard S, Nehrke K, Kim WY. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis. Magn Reson Med 2009;62:706-716 https://doi.org/10.1002/mrm.22052
- Zhang T, Pauly JM, Levesque IR. Accelerating parameter mapping with a locally low rank constraint. Magn Reson Med 2015;73:655-661 https://doi.org/10.1002/mrm.25161
- Zhao B, Lu W, Hitchens TK, Lam F, Ho C, Liang ZP. Accelerated MR parameter mapping with low-rank and sparsity constraints. Magn Reson Med 2015;74:489-498 https://doi.org/10.1002/mrm.25421
- Block KT, Uecker M, Frahm J. Model-based iterative reconstruction for radial fast spin-echo MRI. IEEE Trans Med Imaging 2009;28:1759-1769 https://doi.org/10.1109/TMI.2009.2023119
- Sumpf TJ, Uecker M, Boretius S, Frahm J. Model-based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin-echo MRI. J Magn Reson Imaging 2011;34:420-428 https://doi.org/10.1002/jmri.22634
- Welsh CL, Dibella EV, Adluru G, Hsu EW. Model-based reconstruction of undersampled diffusion tensor k-space data. Magn Reson Med 2013;70:429-440 https://doi.org/10.1002/mrm.24486
- Tran-Gia J, Stab D, Wech T, Hahn D, Kostler H. Model-based acceleration of parameter mapping (MAP) for saturation prepared radially acquired data. Magn Reson Med 2013;70:1524-1534 https://doi.org/10.1002/mrm.24600
- Zhu Y, Peng X, Wu Y, et al. Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints. Med Phys 2017;44:570-580 https://doi.org/10.1002/mp.12054
- Peng X, Ying L, Liu Y, Yuan J, Liu X, Liang D. Accelerated exponential parameterization of T2 relaxation with model-driven low rank and sparsity priors (MORASA). Magn Reson Med 2016;76:1865-1878 https://doi.org/10.1002/mrm.26083
- Chu ML, Chang HC, Oshio K, Chen NK. A single-shot T2 mapping protocol based on echo-split gradient-spin-echo acquisition and parametric multiplexed sensitivity encoding based on projection onto convex sets reconstruction. Magn Reson Med 2018;79:383-393 https://doi.org/10.1002/mrm.26696
- Zhu Y, Liu Y, Ying L, et al. SCOPE: signal compensation for low-rank plus sparse matrix decomposition for fast parameter mapping. Phys Med Biol 2018;63:185009 https://doi.org/10.1088/0031-9155/63/18/185009
- Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487-492 https://doi.org/10.1038/nature25988
- Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018;37:1488-1497 https://doi.org/10.1109/TMI.2018.2820120
- Mardani M, Gong E, Cheng JY, et al. Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans Med Imaging 2019;38:167-179 https://doi.org/10.1109/TMI.2018.2858752
- Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC. Deep learning with domain adaptation for accelerated projection-reconstruction MR. Magn Reson Med 2018;80:1189-1205 https://doi.org/10.1002/mrm.27106
- Lee D, Yoo J, Tak S, Ye JC. Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans Biomed Eng 2018;65:1985-1995 https://doi.org/10.1109/TBME.2018.2821699
- Wang S, Ke Z, Cheng H, et al. DIMENSION: dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training. NMR Biomed 2019:e4131
- Eo T, Jun Y, Kim T, Jang J, Lee HJ, Hwang D. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med 2018;80:2188-2201 https://doi.org/10.1002/mrm.27201
- Yang Y, Sun J, Li H, Xu Z. ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans Pattern Anal Mach Intell 2020;42:521-538 https://doi.org/10.1109/tpami.2018.2883941
- Hammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med 2018;79:3055-3071 https://doi.org/10.1002/mrm.26977
- Aggarwal HK, Mani MP, Jacob M. MoDL: model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging 2019;38:394-405 https://doi.org/10.1109/tmi.2018.2865356
- Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2018;37:491-503 https://doi.org/10.1109/tmi.2017.2760978
- Adler J, Oktem O. Learned primal-dual reconstruction. IEEE Trans Med Imaging 2018;37:1322-1332 https://doi.org/10.1109/tmi.2018.2799231
- Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2019;38:280-290 https://doi.org/10.1109/TMI.2018.2863670
- Cai C, Wang C, Zeng Y, et al. Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network. Magn Reson Med 2018;80:2202-2214 https://doi.org/10.1002/mrm.27205
- Liu F, Feng L, Kijowski R. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping. Magn Reson Med 2019;82:174-188 https://doi.org/10.1002/mrm.27707
- Cohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med 2018;80:885-894 https://doi.org/10.1002/mrm.27198
- Yang J, Zhang Y, Yin W. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J Sel Top Signal Process 2010;4:288-297 https://doi.org/10.1109/JSTSP.2010.2042333
- Lingala SG, Hu Y, DiBella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 2011;30:1042-1054 https://doi.org/10.1109/TMI.2010.2100850
- Cheng J, Ke Z, Wang H, et al. Learning reconstruction without ground-truth data: an unsupervised way for fast MR imaging. In Proceedings of the 28th Annual Meeting of ISMRM, 2020:3634
- Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
- Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag 2008;25:72-82 https://doi.org/10.1109/MSP.2007.914728
- Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62:1574-1584 https://doi.org/10.1002/mrm.22161
- Liang D, Cheng J, Ke Z, Ying L. Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag 2020;37:141-151 https://doi.org/10.1109/msp.2019.2950557
- Cheng J, Wang H, Ying L. Model learning: primal dual networks for fast MR imaging. Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, 22nd International Conference, Shenzhen, China, 2019:21-29
- Walsh DO, Gmitro AF, Marcellin MW. Adaptive reconstruction of phased array MR imagery. Magn Reson Med 2000;43:682-690 https://doi.org/10.1002/(SICI)1522-2594(200005)43:5<682::AID-MRM10>3.0.CO;2-G
- Baboli R, Sharafi A, Chang G, Regatte RR. Isotropic morphometry and multicomponent T1 rho mapping of human knee articular cartilage in vivo at 3T. J Magn Reson Imaging 2018;48:1707-1716 https://doi.org/10.1002/jmri.26173
- Sharafi A, Xia D, Chang G, Regatte RR. Biexponential T1rho relaxation mapping of human knee cartilage in vivo at 3 T. NMR Biomed 2017;30
- Zhu Y, Liu Y, Ying L, Liu X, Zheng H, Liang D. Bio-SCOPE: fast biexponential T1rho mapping of the brain using signal-compensated low-rank plus sparse matrix decomposition. Magn Reson Med 2020;83:2092-2106 https://doi.org/10.1002/mrm.28067