Acknowledgement
This study was supported from a grant (NRF-2020R1C1C1012230) of the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT. This work was also supported by a grant (HI17C1501) of the Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea.
References
- Park JK, Hong DY, Jin ST, Lee DW, Pyun HW. Leak sign on dynamic-susceptibility-contrast magnetic resonance imaging in acute intracerebral hemorrhage. Investig Magn Reson Imaging 2020;24:154-161 https://doi.org/10.13104/imri.2020.24.3.154
- Jung DY, Lee EJ, Bae JM, Choi YJ, Lee, EK, Kim DB. Differentiation between glioblastoma and solitary metastasis: morphologic assessment by conventional brain MR imaging and diffusion-weighted imaging. Investig Magn Reson Imaging 2021;25:23-34 https://doi.org/10.13104/imri.2021.25.1.23
- Oh CH, Kang WY, Lee OJ. Langerhans cell histiocytosis of the rib of an adult female patient: a case report. Investg Magn Reson Imaging 2020;24:61-65 https://doi.org/10.13104/imri.2020.24.1.61
- Rosenberg SA, Henke LE, Shaverdian N, et al. A Multi-Institutional Experience of MR-Guided Liver Stereotactic Body Radiation Therapy. Adv Radiat Oncol 2019;4:142-149 https://doi.org/10.1016/j.adro.2018.08.005
- Wang W, Dumoulin CL, Viswanathan AN, et al. Real-time active MR-tracking of metallic stylets in MR-guided radiation therapy. Magn Reson Med 2015;73:1803-1811 https://doi.org/10.1002/mrm.25300
- Cash RFH, Cocchi L, Lv J, Fitzgerald PB, Zalesky A. Functional Magnetic Resonance Imaging-Guided Personalization of Transcranial Magnetic Stimulation Treatment for Depression. JAMA Psychiatry 2021;78:337-339 https://doi.org/10.1001/jamapsychiatry.2020.3794
- Pozzi E, Vijayakumar N, Rakesh D, Whittle S. Neural Correlates of Emotion Regulation in Adolescents and Emerging Adults: A Meta-analytic Study. Biol Psychiatry 2021;89:194-204 https://doi.org/10.1016/j.biopsych.2020.08.006
- Seo HS, Jang KE, Wang D, Kim IS, Chang Y. Accelerated resting-state functional magnetic resonance imaging using multiband echo-planar imaging with controlled aliasing. Investig Magn Reson Imaging 2017;21:223-232 https://doi.org/10.13104/imri.2017.21.4.223
- Hassel S, Sharma GB, Alders GL, et al. Reliability of a functional magnetic resonance imaging task of emotional conflict in healthy participants. Hum Brain Mapp 2020;41:1400-1415 https://doi.org/10.1002/hbm.24883
- Meinhold W, Martinez DE, Oshinski J, Hu AP, Ueda J. A direct drive parallel plane piezoelectric needle positioning robot for MRI guided intraspinal injection. IEEE Trans Biomed Eng 2021;68:807-814 https://doi.org/10.1109/TBME.2020.3020926
- Kim Y, Cheng SS, Diakite M, Gullapalli RP, Simard JM, Desai JP. Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot. IEEE Trans Robot 2017;33:1386-1397 https://doi.org/10.1109/TRO.2017.2719035
- Ghai S, Finelli A, Corr K, et al. MRI-guided focused ultrasound ablation for localized intermediate-risk prostate cancer: early results of a phase II trial. Radiology 2021;298:695-703 https://doi.org/10.1148/radiol.2021202717
- LeBlang SD, Hoctor K, Steinberg FL. Leiomyoma shrinkage after MRI-guided focused ultrasound treatment: report of 80 patients. AJR Am J Roentgenol 2010;194:274-280 https://doi.org/10.2214/AJR.09.2842
- Pauly KB, Diederich CJ, Rieke V, et al. Magnetic resonance-guided high-intensity ultrasound ablation of the prostate. Top Magn Reson Imaging 2006;17:195-207 https://doi.org/10.1097/RMR.0b013e31803774dd
- H?hne J, Schebesch KM, Zoubaa S, Proescholdt M, Riemenschneider MJ, Schmidt NO. Intraoperative imaging of brain tumors with fluorescein: confocal laser endomicroscopy in neurosurgery. Clinical and user experience. Neurosurg Focus 2021;50:E19
- Sun Y, Hatami N, Yee M, et al. Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery. J Biomed Opt 2010;15:056022 https://doi.org/10.1117/1.3486612
- Ahn H, Song H, Shin DM, Kim K, Choi J. Emerging optical spectroscopy techniques for biomedical applications - a brief review of recent progress. Appl Spectrosc Rev 2018;53: 264-278 https://doi.org/10.1080/05704928.2017.1324877
- Choi JR, Song H, Sung JH, Kim D, Kim K. Microfluidic assay-based optical measurement techniques for cell analysis: a review of recent progress. Biosens Bioelectron 2016;77:227-236 https://doi.org/10.1016/j.bios.2015.07.068
- Zou Y, Chau FS, Zhou G. Ultra-compact optical zoom endoscope using solid tunable lenses. Opt Express 2017;25:20675-20688 https://doi.org/10.1364/OE.25.020675
- He Z, Zhou L, Luo B, Hu B, Du X, Li Y. Multifunction medical endoscope system with optical fiber temperature sensor. Proc SPIE 2014:9216
- Nedoma J, Kepak S, Fajkus M, et al. Magnetic Resonance Imaging Compatible Non-Invasive Fibre-Optic Sensors Based on the Bragg Gratings and Interferometers in the Application of Monitoring Heart and Respiration Rate of the Human Body: A Comparative Study. Sensors (Basel) 2018;18
- Bunce SC, Izzetoglu M, Izzetoglu K, Onaral B, Pourrezaei K. Functional near-infrared spectroscopy. IEEE Eng Med Biol Mag 2006;25:54-62 https://doi.org/10.1109/MEMB.2006.1657788
- Scholkmann F, Kleiser S, Metz AJ, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014;85 Pt 1:6-27 https://doi.org/10.1016/j.neuroimage.2013.05.004
- Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012;63:921-935 https://doi.org/10.1016/j.neuroimage.2012.03.049
- Nguyen HD, Hong KS, Shin YI. Bundled-Optode Method in Functional Near-Infrared Spectroscopy. PLoS One 2016;11:e0165146 https://doi.org/10.1371/journal.pone.0165146
- Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H. Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magn Reson Imaging 2006;24:495-505 https://doi.org/10.1016/j.mri.2005.12.034
- Gagnon L, Yucel MA, Dehaes M, et al. Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. Neuroimage 2012;59:3933-3940 https://doi.org/10.1016/j.neuroimage.2011.10.054
- Duan L, Zhang YJ, Zhu CZ. Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study. Neuroimage 2012;60:2008-2018 https://doi.org/10.1016/j.neuroimage.2012.02.014
- Yuan Z, Ye J. Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains. Front Hum Neurosci 2013;7:676 https://doi.org/10.3389/fnhum.2013.00676
- Chen M, Blumen HM, Izzetoglu M, Holtzer R. Spatial Coregistration of Functional Near-Infrared Spectroscopy to Brain MRI. J Neuroimaging 2017;27:453-460 https://doi.org/10.1111/jon.12432
- Funane T, Sato H, Yahata N, et al. Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes. Neurophotonics 2015;2:015003 https://doi.org/10.1117/1.NPh.2.1.015003
- Liu Y, Piazza EA, Simony E, et al. Measuring speaker-listener neural coupling with functional near infrared spectroscopy. Sci Rep 2017;7:43293 https://doi.org/10.1038/srep43293
- Amyot F, Kenney K, Spessert E, et al. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin 2020;25:102086 https://doi.org/10.1016/j.nicl.2019.102086
- Matarasso AK, Rieke JD, White K, Yusufali MM, Daly JJ. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study. PLoS One 2021;16:e0250431 https://doi.org/10.1371/journal.pone.0250431
- Rieke JD, Matarasso AK, Yusufali MM, et al. Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke. J Neurosci Methods 2020;341:108719 https://doi.org/10.1016/j.jneumeth.2020.108719
- Behroozi M, Helluy X, Strockens F, et al. Event-related functional MRI of awake behaving pigeons at 7T. Nat Commun 2020;11:4715 https://doi.org/10.1038/s41467-020-18437-1
- Jung WB, Shim HJ, Kim SG. Mouse BOLD fMRI at ultrahigh field detects somatosensory networks including thalamic nuclei. Neuroimage 2019;195:203-214 https://doi.org/10.1016/j.neuroimage.2019.03.063
- Grandjean J, Canella C, Anckaerts C, et al. Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. Neuroimage 2020;205:116278 https://doi.org/10.1016/j.neuroimage.2019.116278
- Kaszas A, Szalay G, Slezia A, et al. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci Rep 2021;11:9775 https://doi.org/10.1038/s41598-021-89163-x
- Yang Y, Liu N, He Y, et al. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat Commun 2018;9:1504 https://doi.org/10.1038/s41467-018-03719-6
- Knopfel T, Song C. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat Rev Neurosci 2019;20:719-727 https://doi.org/10.1038/s41583-019-0231-4
- Kannan M, Vasan G, Huang C, et al. Fast, in vivo voltage imaging using a red fluorescent indicator. Nat Methods 2018;15:1108-1116 https://doi.org/10.1038/s41592-018-0188-7
- Kunori N, Takashima I. An Implantable Cranial Window Using a Collagen Membrane for Chronic Voltage-Sensitive Dye Imaging. Micromachines (Basel) 2019;10
- Cramer JV, Gesierich B, Roth S, Dichgans M, During M, Liesz A. In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease. Neuroimage 2019;199:570-584 https://doi.org/10.1016/j.neuroimage.2019.06.014
- Takashima I, Ichikawa M, Iijima T. High-speed CCD imaging system for monitoring neural activity in vivo and in vitro, using a voltage-sensitive dye. J Neurosci Methods 1999;91:147-159 https://doi.org/10.1016/S0165-0270(99)00093-X
- Schulz K, Sydekum E, Krueppel R, et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat Methods 2012;9:597-602 https://doi.org/10.1038/nmeth.2013
- Liang Z, Ma Y, Watson GDR, Zhang N. Simultaneous GCaMP6-based fiber photometry and fMRI in rats. J Neurosci Methods 2017;289:31-38 https://doi.org/10.1016/j.jneumeth.2017.07.002
- Schlegel F, Sych Y, Schroeter A, et al. Fiber-optic implant for simultaneous fluorescence-based calcium recordings and BOLD fMRI in mice. Nat Protoc 2018;13:840-855 https://doi.org/10.1038/nprot.2018.003
- Lake EMR, Ge X, Shen X, et al. Simultaneous cortex-wide fluorescence Ca(2+) imaging and whole-brain fMRI. Nat Methods 2020;17:1262-1271 https://doi.org/10.1038/s41592-020-00984-6
- Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003;100:13940-13945 https://doi.org/10.1073/pnas.1936192100
- Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017;18:222-235 https://doi.org/10.1038/nrn.2017.15
- Song C, Knopfel T. Optogenetics enlightens neuroscience drug discovery. Nat Rev Drug Discov 2016;15:97-109 https://doi.org/10.1038/nrd.2015.15
- Desai M, Kahn I, Knoblich U, et al. Mapping brain networks in awake mice using combined optical neural control and fMRI. J Neurophysiol 2011;105:1393-1405 https://doi.org/10.1152/jn.00828.2010
- Kahn I, Desai M, Knoblich U, et al. Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons. J Neurosci 2011;31:15086-15091 https://doi.org/10.1523/JNEUROSCI.0007-11.2011
- Abe Y, Sekino M, Terazono Y, et al. Opto-fMRI analysis for exploring the neuronal connectivity of the hippocampal formation in rats. Neurosci Res 2012;74:248-255 https://doi.org/10.1016/j.neures.2012.08.007
- Li N, van Zijl P, Thakor N, Pelled G. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex. J Mol Neurosci 2014;53:553-561
- Christie IN, Wells JA, Southern P, et al. fMRI response to blue light delivery in the naive brain: implications for combined optogenetic fMRI studies. Neuroimage 2013;66:634-641 https://doi.org/10.1016/j.neuroimage.2012.10.074
- Lebhardt P, Hohenberg CC, Weber-Fahr W, Kelsch W, Sartorius A. Optogenetic fMRI in the mouse hippocampus: Hemodynamic response to brief glutamatergic stimuli. J Cereb Blood Flow Metab 2016;36:629-638 https://doi.org/10.1177/0271678X15606455
- Chen Y, Pais-Roldan P, Chen X, Frosz MH, Yu X. MRI-guided robotic arm drives optogenetic fMRI with concurrent Ca(2+) recording. Nat Commun 2019;10:2536 https://doi.org/10.1038/s41467-019-10450-3
- Chen X, Sobczak F, Chen Y, et al. Mapping optogeneticallydriven single-vessel fMRI with concurrent neuronal calcium recordings in the rat hippocampus. Nat Commun 2019;10:5239 https://doi.org/10.1038/s41467-019-12850-x
- Monfaredi R, Cleary K, Sharma K. MRI Robots for Needle-Based Interventions: Systems and Technology. Ann Biomed Eng 2018;46:1479-1497 https://doi.org/10.1007/s10439-018-2075-x
- Schwarzmaier HJ, Eickmeyer F, Fiedler VU, Ulrich F. Basic principles of laser induced interstitial thermotherapy in brain tumors. Med Laser Appl 2002;17:147-158 https://doi.org/10.1078/1615-1615-00057
- Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000;12:525-533 https://doi.org/10.1002/1522-2586(200010)12:4<525::AID-JMRI3>3.0.CO;2-V
- Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, et al. MR-guided laser irradiation of recurrent glioblastomas. J Magn Reson Imaging 2005;22:799-803 https://doi.org/10.1002/jmri.20446
- Schwarzmaier HJ, Eickmeyer F, von Tempelhoff W, et al. MR-guided laser-induced interstitial thermotherapy of recurrent glioblastoma multiforme: preliminary results in 16 patients. Eur J Radiol 2006;59:208-215 https://doi.org/10.1016/j.ejrad.2006.05.010
- Carpentier A, McNichols RJ, Stafford RJ, et al. Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 2008;63:ONS21-28; discussion ONS28-29 https://doi.org/10.1227/01.NEU.0000311254.63848.72
- Hawasli AH, Bagade S, Shimony JS, Miller-Thomas M, Leuthardt EC. Magnetic resonance imaging-guided focused laser interstitial thermal therapy for intracranial lesions: single-institution series. Neurosurgery 2013;73:1007-1017 https://doi.org/10.1227/NEU.0000000000000144
- Jethwa PR, Barrese JC, Gowda A, Shetty A, Danish SF. Magnetic resonance thermometry-guided laser-induced thermal therapy for intracranial neoplasms: initial experience. Neurosurgery 2012;71:133-144; 144-135
- Candela-Canto S, Alamar M, Alaez C, et al. Highly realistic simulation for robot-assisted hypothalamic hamartoma real-time MRI-guided laser interstitial thermal therapy (LITT). Childs Nerv Syst 2020;36:1131-1142 https://doi.org/10.1007/s00381-020-04563-0
- Ginalis EE, Danish SF. Magnetic resonance-guided laser interstitial thermal therapy for brain tumors in geriatric patients. Neurosurg Focus 2020;49:E12 https://doi.org/10.3171/2020.7.FOCUS20462
- Arocho-Quinones EV, Lew SM, Handler MH, et al. Magnetic resonance-guided stereotactic laser ablation therapy for the treatment of pediatric brain tumors: a multiinstitutional retrospective study. J Neurosurg Pediatr 2020:1-9
- Brown MG, Drees C, Nagae LM, Thompson JA, Ojemann S, Abosch A. Curative and palliative MRI-guided laser ablation for drug-resistant epilepsy. J Neurol Neurosurg Psychiatry 2018;89:425-433 https://doi.org/10.1136/jnnp-2017-316003
- Lee EJ, Kalia SK, Hong SH. A Primer on Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Medically Refractory Epilepsy. J Korean Neurosurg Soc 2019;62:353-360 https://doi.org/10.3340/jkns.2019.0105
- Gupta K, Cabaniss B, Kheder A, et al. Stereotactic MRI-guided laser interstitial thermal therapy for extratemporal lobe epilepsy. Epilepsia 2020;61:1723-1734 https://doi.org/10.1111/epi.16614
- Gupta K, Dickey AS, Hu R, Faught E, Willie JT. Robot Assisted MRI-Guided LITT of the Anterior, Lateral, and Medial Temporal Lobe for Temporal Lobe Epilepsy. Front Neurol 2020;11:572334 https://doi.org/10.3389/fneur.2020.572334
- Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3:380-387 https://doi.org/10.1038/nrc1071
- Kwiatkowski S, Knap B, Przystupski D, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018;106:1098-1107 https://doi.org/10.1016/j.biopha.2018.07.049
- Gross S, Gilead A, Scherz A, Neeman M, Salomon Y. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med 2003;9:1327-1331 https://doi.org/10.1038/nm940
- Leroy HA, Vermandel M, Leroux B, et al. MRI assessment of treatment delivery for interstitial photodynamic therapy of high-grade glioma in a preclinical model. Lasers Surg Med 2018;50:460-468 https://doi.org/10.1002/lsm.22744
- Bechet D, Auger F, Couleaud P, et al. Multifunctional ultrasmall nanoplatforms for vascular-targeted interstitial photodynamic therapy of brain tumors guided by real-time MRI. Nanomedicine 2015;11:657-670 https://doi.org/10.1016/j.nano.2014.12.007
- Xie W, Guo Z, Gao Q et al. Manganese-doped layered double hydroxide: a biodegradable theranostic nanoplatform with tumor microenvironment response for magnetic resonance imaging-guided photothermal therapy. ACS Appl Bio Mater 2020;3:5845-5855 https://doi.org/10.1021/acsabm.0c00564
- Anwar AR, Muthalib M, Perrey S, et al. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study. Brain Topogr 2016;29:645-660 https://doi.org/10.1007/s10548-016-0507-1
- Pouliot P, Tremblay J, Robert M, et al. Nonlinear hemodynamic responses in human epilepsy: a multimodal analysis with fNIRS-EEG and fMRI-EEG. J Neurosci Methods 2012;204:326-340 https://doi.org/10.1016/j.jneumeth.2011.11.016
- D?hne S, Biessmann F, Samek W, et al. Multivariate machine learning methods for fusing multimodal functional neuroimaging data. Proc IEEE 2015;103:1507-1530 https://doi.org/10.1109/JPROC.2015.2425807
- Abbasi A, Goueytes D, Shulz DE, Ego-Stengel V, Estebanez L. A fast intracortical brain-machine interface with patterned optogenetic feedback. J Neural Eng 2018;15:046011 https://doi.org/10.1088/1741-2552/15/4/046011