DOI QR코드

DOI QR Code

Development of Free Fatty Acid Receptor 4 (FFA4/GPR120) Agonists in Health Science

  • Son, So-Eun (Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Kim, Nam-Jung (Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Im, Dong-Soon (Department of Pharmacy, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
  • Received : 2020.11.25
  • Accepted : 2020.11.30
  • Published : 2021.01.01

Abstract

Till the 21st century, fatty acids were considered as merely building blocks for triglycerides, phospholipids, or cholesteryl esters. However, the discovery of G protein-coupled receptors (GPCRs) for free fatty acids at the beginning of the 21st century challenged that idea and paved way for a new field of research, merged into the field of receptor pharmacology for intercellular lipid mediators. Among the GPCRs for free fatty acids, free fatty acid receptor 4 (FFA4, also known as GPR120) recognizes long-chain polyunsaturated fatty acids such as DHA and EPA. It is significant in drug discovery because it regulates obesity-induced metaflammation and GLP-1 secretion. Our study reviews information on newly developed FFA4 agonists and their application in pathophysiologic studies and drug discovery. It also offers a potency comparison of the FFA4 agonists in an AP-TGF-α shedding assay.

Keywords

References

  1. Ahn, S. H., Park, S. Y., Baek, J. E., Lee, S. Y., Baek, W. Y., Lee, S. Y., Lee, Y. S., Yoo, H. J., Kim, H., Lee, S. H., Im, D. S., Lee, S. K., Kim, B. J. and Koh, J. M. (2016) Free fatty acid receptor 4 (GPR120) stimulates bone formation and suppresses bone resorption in the presence of elevated n-3 fatty acid levels. Endocrinology 157, 2621-2635. https://doi.org/10.1210/en.2015-1855
  2. Azevedo, C. M., Watterson, K. R., Wargent, E. T., Hansen, S. V., Hudson, B. D., Kepczynska, M. A., Dunlop, J., Shimpukade, B., Christiansen, E., Milligan, G., Stocker, C. J. and Ulven, T. (2016) Nonacidic free fatty acid receptor 4 agonists with antidiabetic activity. J. Med. Chem. 59, 8868-8878. https://doi.org/10.1021/acs.jmedchem.6b00685
  3. Briscoe, C. P., Peat, A. J., McKeown, S. C., Corbett, D. F., Goetz, A. S., Littleton, T. R., McCoy, D. C., Kenakin, T. P., Andrews, J. L., Ammala, C., Fornwald, J. A., Ignar, D. M. and Jenkinson, S. (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br. J. Pharmacol. 148, 619-628. https://doi.org/10.1038/sj.bjp.0706770
  4. Chen, Y. L., Lin, Y. P., Sun, C. K., Huang, T. H., Yip, H. K. and Chen, Y. T. (2018a) Extracorporeal shockwave against inflammation mediated by GPR120 receptor in cyclophosphamide-induced rat cystitis model. Mol. Med. 24, 60. https://doi.org/10.1186/s10020-018-0062-1
  5. Chen, Y., Zhang, D., Ho, K. W., Lin, S., Suen, W. C., Zhang, H., Zha, Z., Li, G. and Leung, P. S. (2018b) GPR120 is an important inflammatory regulator in the development of osteoarthritis. Arthritis Res. Ther. 20, 163. https://doi.org/10.1186/s13075-018-1660-6
  6. Christian, M. (2020) Elucidation of the roles of brown and brite fat genes: GPR120 is a modulator of brown adipose tissue function. Exp. Physiol. 105, 1201-1205. https://doi.org/10.1113/EP087877
  7. Christiansen, E., Watterson, K. R., Stocker, C. J., Sokol, E., Jenkins, L., Simon, K., Grundmann, M., Petersen, R. K., Wargent, E. T., Hudson, B. D., Kostenis, E., Ejsing, C. S., Cawthorne, M. A., Milligan, G. and Ulven, T. (2015) Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. Br. J. Nutr. 113, 1677-1688. https://doi.org/10.1017/S000711451500118X
  8. Cornish, J., MacGibbon, A., Lin, J. M., Watson, M., Callon, K. E., Tong, P. C., Dunford, J. E., van der Does, Y., Williams, G. A., Grey, A. B., Naot, D. and Reid, I. R. (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149, 5688-5695. https://doi.org/10.1210/en.2008-0111
  9. Davenport, A. P., Alexander, S. P., Sharman, J. L., Pawson, A. J., Benson, H. E., Monaghan, A. E., Liew, W. C., Mpamhanga, C. P., Bonner, T. I. and Neubig, R. R. (2013) International union of basic and clinical pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev. 65, 967-986. https://doi.org/10.1124/pr.112.007179
  10. Egerod, K. L., Engelstoft, M. S., Lund, M. L., Grunddal, K. V., Zhao, M., Barir-Jensen, D., Nygaard, E. B., Petersen, N., Holst, J. J. and Schwartz, T. W. (2015) Transcriptional and functional characterization of the g protein-coupled receptor repertoire of gastric somatostatin cells. Endocrinology 156, 3909-3923. https://doi.org/10.1210/EN.2015-1388
  11. Engelstoft, M. S., Park, W. M., Sakata, I., Kristensen, L. V., Husted, A. S., Osborne-Lawrence, S., Piper, P. K., Walker, A. K., Pedersen, M. H., Nohr, M. K., Pan, J., Sinz, C. J., Carrington, P. E., Akiyama, T. E., Jones, R. M., Tang, C., Ahmed, K., Offermanns, S., Egerod, K. L., Zigman, J. M. and Schwartz, T. W. (2013) Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Mol. Metab. 2, 376-392. https://doi.org/10.1016/j.molmet.2013.08.006
  12. Finlin, B. S., Zhu, B., Kok, B. P., Godio, C., Westgate, P. M., Grayson, N., Sims, R., Bland, J. S., Saez, E. and Kern, P. A. (2017) The influence of a KDT501, a novel isohumulone, on adipocyte function in humans. Front. Endocrinol. 8, 255. https://doi.org/10.3389/fendo.2017.00255
  13. Fredriksson, R., Lagerstrom, M. C., Lundin, L. and Schioth, H. B. (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256-1272. https://doi.org/10.1124/mol.63.6.1256
  14. Garrel, G., Simon, V., Denoyelle, C., Cruciani-Guglielmacci, C., Migrenne, S., Counis, R., Magnan, C. and Cohen-Tannoudji, J. (2011) Unsaturated fatty acids stimulate LH secretion via novel PKCepsilon and -theta in gonadotrope cells and inhibit GnRH-induced LH release. Endocrinology 152, 3905-3916. https://doi.org/10.1210/en.2011-1167
  15. Gong, Z., Yoshimura, M., Aizawa, S., Kurotani, R., Zigman, J. M., Sakai, T. and Sakata, I. (2014) G protein-coupled receptor 120 signaling regulates ghrelin secretion in vivo and in vitro. Am. J. Physiol. Endocrinol. Metab. 306, E28-E35. https://doi.org/10.1152/ajpendo.00306.2013
  16. Gozal, D., Qiao, Z., Almendros, I., Zheng, J., Khalyfa, A., Shimpukade, B. and Ulven, T. (2016) Treatment with TUG891, a free fatty acid receptor 4 agonist, restores adipose tissue metabolic dysfunction following chronic sleep fragmentation in mice. Int. J. Obes. (Lond.) 40, 1143-1149. https://doi.org/10.1038/ijo.2016.37
  17. Graciano, M. F., Valle, M. M., Curi, R. and Carpinelli, A. R. (2013) Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets 5, 139-148. https://doi.org/10.4161/isl.25459
  18. Han, L., Song, S., Niu, Y., Meng, M. and Wang, C. (2017) Eicosapentaenoic acid (EPA) induced macrophages activation through GPR120-mediated Raf-ERK1/2-IKKβ-NF-κB p65 signaling pathways. Nutrients 9, 937. https://doi.org/10.3390/nu9090937
  19. Hansen, K. B., Rosenkilde, M. M., Knop, F. K., Wellner, N., Diep, T. A., Rehfeld, J. F., Andersen, U. B., Holst, J. J. and Hansen, H. S. (2011) 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J. Clin. Endocrinol. Metab. 96, E1409-E1417. https://doi.org/10.1210/jc.2011-0647
  20. Hansen, S. V. and Ulven, T. (2017) Pharmacological tool compounds for the free fatty acid receptor 4 (FFA4/GPR120). Handb. Exp. Pharmacol. 236, 33-56. https://doi.org/10.1007/164_2016_60
  21. Hara, T., Hirasawa, A., Sun, Q., Sadakane, K., Itsubo, C., Iga, T., Adachi, T., Koshimizu, T. A., Hashimoto, T., Asakawa, Y. and Tsujimoto, G. (2009) Novel selective ligands for free fatty acid receptors GPR120 and GPR40. Naunyn Schmiedebergs Arch. Pharmacol. 380, 247-255. https://doi.org/10.1007/s00210-009-0425-9
  22. Hasan, A. U., Ohmori, K., Hashimoto, T., Kamitori, K., Yamaguchi, F., Noma, T., Igarashi, J., Tsuboi, K., Tokuda, M., Nishiyama, A. and Kohno, M. (2017) GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines. Biochem. Biophys. Res. Commun. 486, 76-82. https://doi.org/10.1016/j.bbrc.2017.03.001
  23. Hirasawa, A., Tsumaya, K., Awaji, T., Katsuma, S., Adachi, T., Yamada, M., Sugimoto, Y., Miyazaki, S. and Tsujimoto, G. (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90-94. https://doi.org/10.1038/nm1168
  24. Huang, Z., Guo, F., Xia, Z., Liang, Y., Lei, S., Tan, Z., Ma, L. and Fu, P. (2020) Activation of GPR120 by TUG891 ameliorated cisplatininduced acute kidney injury via repressing ER stress and apoptosis. Biomed. Pharmacother. 126, 110056. https://doi.org/10.1016/j.biopha.2020.110056
  25. Hudson, B. D., Shimpukade, B., Mackenzie, A. E., Butcher, A. J., Pediani, J. D., Christiansen, E., Heathcote, H., Tobin, A. B., Ulven, T. and Milligan, G. (2013) The pharmacology of TUG-891, a potent and selective agonist of the free fatty acid receptor 4 (FFA4/GPR120), demonstrates both potential opportunity and possible challenges to therapeutic agonism. Mol. Pharmacol. 84, 710-725. https://doi.org/10.1124/mol.113.087783
  26. Ichimura, A., Hirasawa, A., Poulain-Godefroy, O., Bonnefond, A., Hara, T., Yengo, L., Kimura, I., Leloire, A., Liu, N. and Iida, K. (2012) Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature 483, 350-354. https://doi.org/10.1038/nature10798
  27. Im, D. S. (2012) Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog. Lipid Res. 51, 232-237. https://doi.org/10.1016/j.plipres.2012.02.003
  28. Im, D. S. (2013) Intercellular lipid mediators and GPCR drug discovery. Biomol. Ther. (Seoul) 21, 411-422. https://doi.org/10.4062/biomolther.2013.080
  29. Inoue, A., Ishiguro, J., Kitamura, H., Arima, N., Okutani, M., Shuto, A., Higashiyama, S., Ohwada, T., Arai, H., Makide, K. and Aoki, J. (2012) TGFa shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021-1029. https://doi.org/10.1038/nmeth.2172
  30. Janssen, S., Laermans, J., Iwakura, H., Tack, J. and Depoortere, I. (2012) Sensing of fatty acids for octanoylation of ghrelin involves a gustatory G-protein. PLoS ONE 7, e40168. https://doi.org/10.1371/journal.pone.0040168
  31. Kang, S., Huang, J., Lee, B. K., Jung, Y. S., Im, E., Koh, J. M. and Im, D. S. (2018) Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 105-116. https://doi.org/10.1016/j.bbalip.2017.11.002
  32. Kern, P. A., Finlin, B. S., Ross, D., Boyechko, T., Zhu, B., Grayson, N., Sims, R. and Bland, J. S. (2017) Effects of KDT501 on metabolic parameters in insulin-resistant prediabetic humans. J. Endocr. Soc. 1, 650-659. https://doi.org/10.1210/js.2017-00202
  33. Kim, H. J., Yoon, H. J., Kim, B. K., Kang, W. Y., Seong, S. J., Lim, M. S., Kim, S. Y. and Yoon, Y. R. (2016) G protein-coupled receptor 120 signaling negatively regulates osteoclast differentiation, survival, and function. J. Cell. Physiol. 231, 844-851. https://doi.org/10.1002/jcp.25133
  34. Konda, V. R., Desai, A., Darland, G., Grayson, N. and Bland, J. S. (2014) KDT501, a derivative from hops, normalizes glucose metabolism and body weight in rodent models of diabetes. PLoS ONE 9, e87848. https://doi.org/10.1371/journal.pone.0087848
  35. Konno, Y., Ueki, S., Takeda, M., Kobayashi, Y., Tamaki, M., Moritoki, Y., Oyamada, H., Itoga, M., Kayaba, H., Omokawa, A. and Hirokawa, M. (2015) Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis. PLoS ONE 10, e0120386. https://doi.org/10.1371/journal.pone.0120386
  36. Li, Z., Zhou, Z. and Zhang, L. (2020) Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016-2019): a patent review. Expert Opin. Ther. Pat. 30, 27-38. https://doi.org/10.1080/13543776.2020.1698546
  37. Mo, Z., Tang, C., Li, H., Lei, J., Zhu, L., Kou, L., Li, H., Luo, S., Li, C., Chen, W. and Zhang, L. (2020) Eicosapentaenoic acid prevents inflammation induced by acute cerebral infarction through inhibition of NLRP3 inflammasome activation. Life Sci. 242, 117133. https://doi.org/10.1016/j.lfs.2019.117133
  38. Moran, B. M., Abdel-Wahab, Y. H., Flatt, P. R. and McKillop, A. M. (2014) Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. Diabetes Obes. Metab. 16, 1128-1139. https://doi.org/10.1111/dom.12330
  39. Murtaza, B., Hichami, A., Khan, A. S., Shimpukade, B., Ulven, T., Ozdener, M. H. and Khan, N. A. (2020) Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice. J. Lipid Res. 61, 133-142. https://doi.org/10.1194/jlr.ra119000142
  40. Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K. and Matsukura, S. (2001) A role for ghrelin in the central regulation of feeding. Nature 409, 194-198. https://doi.org/10.1038/35051587
  41. Oh, D. Y., Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W. J., Watkins, S. M. and Olefsky, J. M. (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687-698. https://doi.org/10.1016/j.cell.2010.07.041
  42. Oh, D. Y., Walenta, E., Akiyama, T. E., Lagakos, W. S., Lackey, D., Pessentheiner, A. R., Sasik, R., Hah, N., Chi, T. J., Cox, J. M., Powels, M. A., Di Salvo, J., Sinz, C., Watkins, S. M., Armando, A. M., Chung, H., Evans, R. M., Quehenberger, O., McNelis, J., BognerStrauss, J. G. and Olefsky, J. M. (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med. 20, 942-947. https://doi.org/10.1038/nm.3614
  43. Patnaik, S. S., Lagana, A. S., Vitale, S. G., Buttice, S., Noventa, M., Gizzo, S., Valenti, G., Rapisarda, A. M. C., La Rosa, V. L. and Magno, C. (2017) Etiology, pathophysiology and biomarkers of interstitial cystitis/painful bladder syndrome. Arch. Gynecol. Obstet. 295, 1341-1359. https://doi.org/10.1007/s00404-017-4364-2
  44. Raptis, D. A., Limani, P., Jang, J. H., Ungethum, U., Tschuor, C., Graf, R., Humar, B. and Clavien, P. A. (2014) GPR120 on Kupffer cells mediates hepatoprotective effects of omega3-fatty acids. J. Hepatol. 60, 625-632. https://doi.org/10.1016/j.jhep.2013.11.006
  45. Schilperoort, M., van Dam, A. D., Hoeke, G., Shabalina, I. G., Okolo, A., Hanyaloglu, A. C., Dib, L. H., Mol, I. M., Caengprasath, N., Chan, Y. W., Damak, S., Miller, A. R., Coskun, T., Shimpukade, B., Ulven, T., Kooijman, S., Rensen, P. C. and Christian, M. (2018) The GPR120 agonist TUG-891 promotes metabolic health by stimulating mitochondrial respiration in brown fat. EMBO Mol. Med. 10, e8047. https://doi.org/10.15252/emmm.201708047
  46. Serhan, C. N., Chiang, N. and Dalli, J. (2018) New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol. Aspects Med. 64, 1-17. https://doi.org/10.1016/j.mam.2017.08.002
  47. Shimpukade, B., Hudson, B. D., Hovgaard, C. K., Milligan, G. and Ulven, T. (2012) Discovery of a potent and selective GPR120 agonist. J. Med. Chem. 55, 4511-4515. https://doi.org/10.1021/jm300215x
  48. Son, S. E., Park, S. J., Koh, J. M. and Im, D. S. (2020) Free fatty acid receptor 4 (FFA4) activation ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis by increasing regulatory T cells in mice. Acta Pharmacol. Sin. 41, 1337-1347. https://doi.org/10.1038/s41401-020-0435-1
  49. Song, T., Zhou, Y., Peng, J., Tao, Y. X., Yang, Y., Xu, T., Peng, J., Ren, J., Xiang, Q. and Wei, H. (2016) GPR120 promotes adipogenesis through intracellular calcium and extracellular signal-regulated kinase 1/2 signal pathway. Mol. Cell. Endocrinol. 434, 1-13. https://doi.org/10.1016/j.mce.2016.06.009
  50. Sparks, S. M., Chen, G., Collins, J. L., Danger, D., Dock, S. T., Jayawickreme, C., Jenkinson, S., Laudeman, C., Leesnitzer, M. A., Liang, X., Maloney, P., McCoy, D. C., Moncol, D., Rash, V., Rimele, T., Vulimiri, P., Way, J. M. and Ross, S. (2014) Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120). Bioorg. Med. Chem. Lett. 24, 3100-3103. https://doi.org/10.1016/j.bmcl.2014.05.012
  51. Stone, V. M., Dhayal, S., Brocklehurst, K. J., Lenaghan, C., Sorhede Winzell, M., Hammar, M., Xu, X., Smith, D. M. and Morgan, N. G. (2014) GPR120 (FFAR4) is preferentially expressed in pancreatic d cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57, 1182-1191. https://doi.org/10.1007/s00125-014-3213-0
  52. Su, X. L., Liu, Y. G., Shi, M., Zhao, Y. Y., Liang, X. Y., Zhang, L. J., Wei, L. L. and Zhao, Y. F. (2020) The GPR120 agonist TUG-891 inhibits the motility and phagocytosis of mouse alveolar macrophages. Biomed. Res. Int. 2020, 1706168.
  53. Suckow, A. T. and Briscoe, C. P. (2017) Key questions for translation of FFA receptors: from pharmacology to medicines. Handb. Exp. Pharmacol. 236, 101-131. https://doi.org/10.1007/164_2016_45
  54. Sun, M., Wu, W., Liu, Z. and Cong, Y. (2017) Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 52, 1-8. https://doi.org/10.1007/s00535-016-1242-9
  55. Sun, Q., Hirasawa, A., Hara, T., Kimura, I., Adachi, T., Awaji, T., Ishiguro, M., Suzuki, T., Miyata, N. and Tsujimoto, G. (2010) Structureactivity relationships of GPR120 agonists based on a docking simulation. Mol. Pharmacol. 78, 804-810. https://doi.org/10.1124/mol.110.066324
  56. Suzuki, T., Igari, S., Hirasawa, A., Hata, M., Ishiguro, M., Fujieda, H., Itoh, Y., Hirano, T., Nakagawa, H., Ogura, M., Makishima, M., Tsujimoto, G. and Miyata, N. (2008) Identification of G protein-coupled receptor 120-selective agonists derived from PPARg agonists. J. Med. Chem. 51, 7640-7644. https://doi.org/10.1021/jm800970b
  57. Takahashi, K., Fukushima, K., Onishi, Y., Minami, K., Otagaki, S., Ishimoto, K., Fukushima, N., Honoki, K. and Tsujiuchi, T. (2018) Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. Exp. Cell Res. 369, 54-60. https://doi.org/10.1016/j.yexcr.2018.05.005
  58. Takahashi, K., Fukushima, K., Onishi, Y., Node, Y., Inui, K., Fukushima, N., Honoki, K. and Tsujiuchi, T. (2017) Different effects of Gprotein-coupled receptor 120 (GPR120) and GPR40 on cell motile activity of highly migratory osteosarcoma cells. Biochem. Biophys. Res. Commun. 484, 675-680. https://doi.org/10.1016/j.bbrc.2017.01.175
  59. Tan, J. K., McKenzie, C., Marino, E., Macia, L. and Mackay, C. R. (2017) Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371-402. https://doi.org/10.1146/annurev-immunol-051116-052235
  60. Ulven, T. and Christiansen, E. (2015) Dietary fatty acids and their potential for controlling metabolic diseases through activation of FFA4/GPR120. Annu. Rev. Nutr. 35, 239-263. https://doi.org/10.1146/annurev-nutr-071714-034410
  61. Villegas-Comonfort, S., Takei, Y., Tsujimoto, G., Hirasawa, A. and Garcia-Sainz, J. A. (2017) Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization. Prostaglandins Leukot. Essent. Fatty Acids 117, 1-10. https://doi.org/10.1016/j.plefa.2017.01.013
  62. Wang, C., Liu, Y., Pan, Y. and Jin, H. (2020) Effect of GSK-137647A, the first non-carboxylic FFA4 agonist, on the osteogenic and adipogenic differentiation of bone mesenchymal stem cells in db/db mice. J. Pharm. Pharmacol. 72, 461-469. https://doi.org/10.1111/jphp.13217
  63. Wang, Y., Xie, T., Zhang, D. and Leung, P. S. (2019) GPR120 protects lipotoxicity-induced pancreatic β-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin. Sci. (Lond.) 133, 101-116. https://doi.org/10.1042/CS20180836
  64. Watterson, K. R., Hansen, S. V., Hudson, B. D., Alvarez-Curto, E., Raihan, S. Z., Azevedo, C. M., Martin, G., Dunlop, J., Yarwood, S. J. and Ulven, T. (2017) Probe-dependent negative allosteric modulators of the long-chain free fatty acid receptor FFA4. Mol. Pharmacol. 91, 630-641. https://doi.org/10.1124/mol.116.107821
  65. Wellhauser, L. and Belsham, D. D. (2014) Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons. J. Neuroinflammation 11, 60. https://doi.org/10.1186/1742-2094-11-60
  66. Wu, Q., Wang, H., Zhao, X., Shi, Y., Jin, M., Wan, B., Xu, H., Cheng, Y., Ge, H. and Zhang, Y. (2013) Identification of G-protein-coupled receptor 120 as a tumor-promoting receptor that induces angiogenesis and migration in human colorectal carcinoma. Oncogene 32, 5541-5550. https://doi.org/10.1038/onc.2013.264
  67. Yore, M. M., Syed, I., Moraes-Vieira, P. M., Zhang, T., Herman, M. A., Homan, E. A., Patel, R. T., Lee, J., Chen, S. and Peroni, O. D. (2014) Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318-332. https://doi.org/10.1016/j.cell.2014.09.035
  68. Zhao, C., Zhou, J., Meng, Y., Shi, N., Wang, X., Zhou, M., Li, G. and Yang, Y. (2020) DHA sensor GPR120 in host defense exhibits the dual characteristics of regulating dendritic cell function and skewing the balance of Th17/Tregs. Int. J. Biol. Sci. 16, 374-387. https://doi.org/10.7150/ijbs.39551
  69. Zhao, J., Wang, H., Shi, P., Wang, W. and Sun, Y. (2017) GPR120, a potential therapeutic target for experimental colitis in IL-10 deficient mice. Oncotarget 8, 8397-8405. https://doi.org/10.18632/oncotarget.14210
  70. Zhao, Y. Y., Fu, H., Liang, X. Y., Zhang, B. L., Wei, L. L., Zhu, J. X., Chen, M. W. and Zhao, Y. F. (2019) Lipopolysaccharide inhibits GPR120 expression in macrophages via Toll-like receptor 4 and p38 MAPK activation. Cell Biol. Int. doi: 10.1002/cbin.11204 [Online ahead of print].

Cited by

  1. Structure based prediction of a novel GPR120 antagonist based on pharmacophore screening and molecular dynamics simulations vol.19, 2021, https://doi.org/10.1016/j.csbj.2021.11.005
  2. Overexpression of NREP Promotes Migration and Invasion in Gastric Cancer Through Facilitating Epithelial-Mesenchymal Transition vol.9, 2021, https://doi.org/10.3389/fcell.2021.746194
  3. Anti-Atherosclerotic Potential of Free Fatty Acid Receptor 4 (FFAR4) vol.9, pp.5, 2021, https://doi.org/10.3390/biomedicines9050467
  4. Advances in Technologies for Highly Active Omega-3 Fatty Acids from Krill Oil: Clinical Applications vol.19, pp.6, 2021, https://doi.org/10.3390/md19060306