Acknowledgement
This work was supported by a Research Grant of Pukyong National University(2021). We appreciate anonymous referees in commenting to improve the quality of our paper.
References
- Albalawi, Rania, Yeap, Tet. H., and Benyoucef, Morad., Using Topic Modeling Methods for Short-text Data: A Comparative Analysis, Frontiers in Artificial Intelligence, 2020, 3, pp. 1-14. https://doi.org/10.3389/frai.2020.00001
- Arun, R. Suresh, V., Mdahavan, C. E. V, and Murty, M. N., On Finding the Natural Number of Topics with Latent Dirichlet Allocations: Some Observation, PAKDD, Springer-Verlag, 2010, pp. 391-402.
- Barde, B. V. and Bainwad, A. M., An Overview of Topic Modeling Methods and Tools, International Conference on Intelligent Computing and Control Systems, 2017, ICICCS, pp. 745-750.
- Blei, D. M., Ng, A. Y., and Jordan, Michael, I., Latent Dirichlet Allocation, Journal of Machine Learning Research, 2003, Vol. 3, pp. 993-1022.
- Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., and Blei, D. M., Reading Tea Leaves: How Humans Interpret Topic Models, In Advances in Neural Information Processing Systems, 2009, pp. 288-296.
- Cho, G. H., Lim, S. Y., and Hur, S., An Analysis of the Research Methodologies and Techniques in the Industrial Engineering Using Text Mining, Journal of the Korean Institute of Industrial Engineers, 2014, Vol. 40, No. 1, pp. 52-59. https://doi.org/10.7232/JKIIE.2014.40.1.052
- Cho, J. Y. and Cho, K. W., Topic Modeling on the Adolescent Problem Using Text Mining, Journal of the Korea Institute of Information and Communication Engineering, 2018, Vol. 22, No. 12, pp. 1589-1595. https://doi.org/10.6109/JKIICE.2018.22.12.1589
- Cho, S. G. and Kim, S. B., Finding Meaningful Pattern of Key Words in IIE Transactions Using Text Mining, Journal of the Korean Institute of Industrial Engineers, 2012, Vol. 38, No. 1, pp. 67-73. https://doi.org/10.7232/JKIIE.2012.38.1.067
- Choi, J. W., Jang, J. J., Kim, D. H., and Yoon, J. H., Identifying Interdisciplinary Trends of Humanities, Sociology, Science and Technology Research in Korea Using Topic Modeling and Network Analysis, Journal of Society of Korea Industrial and Systems Engineering, 2019, Vol. 42, No. 1, pp. 74-86. https://doi.org/10.11627/jkise.2019.42.1.074
- Chuang, J., Manning, C. D., and Heer, J, Termite: Visualization Techniques for Assessing Textual Topic Models, http://www.researchgate.net/publication/254004974.
- Chung, K. S., Sin W. S., Baek, D. H., and Ju, Y. J., Review on the TQM Literature Appeared in KSQM, Journal of Korean Society for Quality Management, 2016, Vol. 44, No. 1, pp. 43-60. https://doi.org/10.7469/JKSQM.2016.44.1.043
- Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R., Indexing by Latent Semantic Analysis, Journal of the American Society for Information Science, 1990, Vol. 41, No. 6, pp. 391-407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
- Deisenroth, M. P., Faisal, A. A., and Ong, C. S., Mathematics for Machine Learning, Cambridge University Press, 2020.
- Dinakar, K., Chen, J., Lieberman, H., Picard, R., and Filbin, R., Mixed Initiative Real-Time Topic Modeling & Visualization for Crisis Counseling, Proceedings of the 20th International Conference on Intelligent User Interfaces, 2015, pp. 417-426.
- Hearst, M., What is Text Mining?, SIMA, https://www.jaist.ac.jp/~bao/MOT-Ishikawa/Furt-herReadingNo1.pdf.
- Hofmann, T., Unsupervised Learning by Probabilistic Latent Semantic Analysis, Machine Learning, 2001, 42, pp. 177-196. https://doi.org/10.1023/a:1007617005950
- Hong, J. L., Yu, M. R., and Choi, B. R., An Analysis of Mobile Augmented Reality App Reviews Using Topic Modeling, Journal of Digital Contents Society, 2019, Vol. 20, No. 7, pp. 1417-1427. https://doi.org/10.9728/dcs.2019.20.7.1417
- Jeong, B. K. and Lee, H. Y., Research Topics in Industrial Engineering 2001-2015, Journal of the Korean Institute of Industrial Engineers, 2016, Vol. 42, No. 6, pp. 421-431. https://doi.org/10.7232/JKIIE.2016.42.6.421
- Jin, M. and Ko, H. K., Analysis of Trends in Mathematics Education Research Using Text Mining, Journal of Korean Society Mathematical Education Series E, 2019, Vol. 33, No. 3, pp. 275-294.
- Kim, J. E. and Baek, S. G., Analysis of Issues on the College and University Structural Reform Evaluation Using Text Big Data Analytics, Asian Journal of Education, 2016, Vol. 17, No. 3 pp. 409-436. https://doi.org/10.15753/aje.2016.09.17.3.409
- Kim, M. K., Lee, Y., and Han, C. H., Analysis of Consulting Research Trends Using Topic Modeling, Journal of Society of Korea Industrial and Systems Engineering, 2017, Vol. 40, No. 4, pp. 46-54. https://doi.org/10.11627/jkise.2017.40.4.046
- Kim, S. K. and Jang, S. Y., A Study on the Research Trends in Domestic Industrial and Management Engineering Using Topic Modeling, Journal of the Korea Management Engineers Society, 2016, Vol. 21, No. 3, pp. 71-95.
- Kim, S. Y., Analysis of Research Trends in SIAM Journal on Applied Mathematics Using Topic Modeling, Journal of the Korea Academia-Industrial Cooperation Society, 2020, Vol. 21, No. 7, pp. 607-615. https://doi.org/10.5762/KAIS.2020.21.7.607
- Korean Society of Industrial and Systems Engineering, http://www.ksie.or.kr.
- Landauer, T. K., Foltz, P. W., and Laham, D., An Introduction to Latent Semantic Analysis, Discourse Processes, 1998, Vol. 25:2-3, pp. 259-284. https://doi.org/10.1080/01638539809545028
- Langley, P., Selection of Relevant Features in Machine Learning, AAAI Technical Report FS-94-02, 1994, pp. 127-131.
- Lee, K. H., Jung, H. J., and Song, M., Weighted Subject - Method Network Analysis of Library and Information Science Studies, Journal of the Korean Society for Library and Information Science, 2015, Vol. 49, No. 3, pp. 457-488. https://doi.org/10.4275/KSLIS.2015.49.3.457
- Lee, S. B., Analysis of Research Trends in Journal of Korean Society for Quality Management by Text Mining Processing, Journal of Korean Society for Quality Management, 2019, Vol. 47, No. 3, pp. 597-613. https://doi.org/10.7469/JKSQM.2019.47.3.597
- Mashey, J., Big Dat and the Next Wave of Infrastress, https://static.usenix.org/event/usenix99/invited_talks/mashey.pdf.
- McCallum, A. K., MALLET: A Machine Learning for Language Toolkit, 2002, http://mallet.cs.umass.edu/about.php.
- Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., Jaussler, T., Schmid-Petri, H., and Adam, S., Applying LDA Topic Modeling in Communication Research: Toward a Vaid and Reliable Methodology, Communication Methods and Measures, 2018, Vol. 12, No. 2-3, pp. 93-118. https://doi.org/10.1080/19312458.2018.1430754
- Mulunda, C. K., Wagacha, P. W., and Muchemi, L., Review of Trends in Topic Modeling Techniques, Tools, Inference Algorithms and Applications, The 5th International Conference on Soft Computing and Machine Intelligence, 2018, pp. 28-37.
- Newman, D., Lau, J. H., Grieser, K., and Baldwin, T., Automatic Evaluation of Topic Coherence, Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, 2010, June, pp. 100-108.
- Park, I. C., Kim, S. H., and Yoon, B. U., Technology Clustering Using Textual Information of Reference Titles in Scientific Paper, Journal of Society of Korea Industrial and Systems Engineering, 2020, Vol. 43, No. 2, pp. 25-32. https://doi.org/10.11627/jkise.2020.43.2.025
- Park, J. H. and Song, M., A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling, Journal of the Korean Society for Information Management, 2013, Vol. 30, No. 1, pp. 7-32. https://doi.org/10.3743/KOSIM.2013.30.1.007
- Park, J. H. and Oh, H. J., Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea: Focused on LDA and HDP, Korean Library And Information Science Society, 2017, Vol. 48, No. 4, pp. 235-258. https://doi.org/10.16981/kliss.48.4.201712.235
- Park, S. U. and Lee, B. R., Trend Analysis of Korean Cultural Policy Studies Using Text Mining, The Korean Governance Review, 2017, Vol. 24, No. 3, pp. 95-119. https://doi.org/10.17089/KGR.2017.24.3.004
- Ramage, D., Rosen, E., Chuang, J., Manning, C. D., and McFarland, D. A., Topic Modeling for the Social Sciences, NIPS Workshop, 2009, pp. 1-4.
- Rehurek, R. and Sojka, P., Software Framework for Topic Modelling with Large Corpora, The LREC Workshop on New Challenges for NLP Frameworks, 2010, pp. 45-50.
- Seo, H. B. and Lee, H. Y., PSS Research Trend, Proceeding of Spring Conference in the Korea Society for Simulation, 2017, pp. 997-1017.
- Siever, C. and Shirley, K. E., LDAvis: A Method for Visualizing and Interpreting Topics, Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, 2014, pp. 63-70.
- Teh, Y., Whye, J., Michaerl, B., Mattew. J., and Blei, D. M., Hierarchical Dirichlet Processes, Journal of the American Statistical Association, 2006, Vol. 101, pp. 1566-1581. https://doi.org/10.1198/016214506000000302
- Vayansky, I. and Kumar, S. A. P., A Review of Topic Modeling Methods, Information Systems, 2020, Vol. 94, pp. 1-15.
- Yoon, S. Y. and Yoon, D. K., A Trend Analysis on Disaster and Safety Management Using Topic Modeling, Journal of the Korean Society for Geospatial Information Science, 2017, Vol. 25, No. 3, pp. 75-85. https://doi.org/10.7319/kogsis.2017.25.3.075
- Zhao, W., Chen, J. J., Perkins, R., Liu, Z., Ge, W., Ding, Y., and Zou, W., A Heuristic Approach to Determine an Appropriate Number of Topics in Topic Modeling, BMC Bioinformatics, 2015, Vol. 16, No. S8, pp. 1-10. https://doi.org/10.1186/s12859-014-0430-y