참고문헌
- Atluri, G., Karoatne, A., and Kumar, V., Spatio-Temporal Data Mining: A Survey of Problems and Method, ACM Computing Surveys, 2018, Vol. 51, No. 4, Article 83.
- Atmosukarto, I., Ghanem, B., and Ahuja, N., Trajectory-based Fisher Kernel Representation for Action Recognition in Videos, 21st International Conference on Pattern Recognition, 2012, pp. 3333-3336.
- Aytekin, C., Ni, X., Cricri, F., and Aksu, E., Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representation, arXiv:1802.00187[cs.LG], 2018.
- Bian, J., Tian, D., Tang, Y., and Tao, D., A Survey on Trajectory Clustering Analysis, arXiv:1802.06971[cs. CV], 2018.
- Dhillon, I.S. and Modha, D.S., Concept Decompositions for Large Sparse Text Data using Clustering, Machine Learning, 2001, Vol. 42, No. 1, pp. 143-175. https://doi.org/10.1023/a:1007612920971
- Fu, P., Wang, H., Liu, K., Hu,X., and Zhang, H., Finding Abnormal Vessel Trajectories using Feature Learning, IEEE Access, 2017, Vol. 5, pp. 7898-7909. https://doi.org/10.1109/ACCESS.2017.2698208
- Guo, X., Gao, L., Liu, X., and Yin, J., Improved Deep Embedded Clustering with Local Structure Preservation, International Joint Conference on Artificial Intelligence, 2017, pp. 1753-1759.
- Guo, X., Liu, X., Zhu, E., and Yin, J., Deep Clustering with Convolutional Autoencoders, International Conference on Neural Information Processing, 2017, pp. 373-382.
- Li, S., Liang, M., and Liu, R.W., Vessel Trajectory Similarity Measure based on Deep Convolutional Autoencoder, 2020 5thIEEE International Conference on Big Data Analytics, 2020, pp. 333-338.
- Li, X., Zhao, K., Gong, G., Jensen, C.S., and Wei, W., Deep Representation Learning for Trajectory Similarity Computation, IEEE 34th International Conference on Data Engineering, 2018, pp. 617-628.
- Liang, M., Liu, R.W., Li, S., Xiao, Z., Liu, X., and Lu, F., An Unsupervised Learning Method with Convolutional Auto-Encoder for Vessel Trajectory Similarity Computation, arXiv:2101.03169 [cs.LG], 2021.
- Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., and Long, J., A Survey of Clustering with Deep Learning: From the Perspective of Network Architecture, IEEE Access, 2018, Vol. 6, pp. 39501-39514. https://doi.org/10.1109/access.2018.2855437
- Naftel, A. and Khalid, S., Motion Trajectory Learning in the DFT-Coefficient Feature Space, Fourth IEEE International Conference on Computer Vision Systems, 2006, pp. 40-47.
- Oh, J.-Y., Kim, H.-J., and Park, S.-K., Detection of Ship Movement Anomaly using AIS Data: A Study, Journal of Navigation and Port Research, 2018, Vol. 42, No. 4, pp. 277-282. https://doi.org/10.5394/KINPR.2018.42.4.277
- Oh, J.-Y., Kim, H.-J., and Park, S.-K., Development of a Decision Support System based on Autoencoder for Vessel Traffic Service, KSIIE Transactions on Computing Practices, 2018, Vol. 24, No. 12, pp. 642-648. https://doi.org/10.5626/KTCP.2018.24.12.642
- Olive, X., Basora, L., Viry, B., and Alligier, R., Deep Trajectory Clustering with Autoencoders, Proceedings of the International Conference on Research in Air Transportation, 2020, pp. 1-8.
- Park, J. and Kim, S., Maritime Anomaly Detection Based on VAE-CUSUM Monitoring System, Journal of the Korean Institute of Industrial Engineers, 2020, Vol. 46, No. 4, pp. 432-442. https://doi.org/10.7232/JKIIE.2020.46.4.432
- Rezaei, M., Yang, H., and Meinel, K., Deep Neural Network with l2-norm Unit for Brain Lesions Detection, arXiv:1708.05221[cs.CV], 2017.
- Santhosh, K. K., Dogra, D. P., Roy, P. P., and Mitra, A., Video Trajectory Classification and Anomaly Detection using Hybrid CNN-VAE, ArXiv: 1812.07203[cs.CV], 2018.
- Son, J.-H., Jang, J.-G., Choi, B., and Kim, K., Detection of Abnormal Vessel Trajectories with Convolutional Autoencoder, Journal of Society of Korea Industrial and Systems Engineering, 2020, Vol. 43, No. 4, pp. 190-197. https://doi.org/10.11627/jkise.2020.43.4.190
- Taghizadeh, S., Elekes, A., Schaler, M., and Bohm, K., How Meaningful are Similarity in Deep Trajectory Representations?, Information Systems, 2021, Vol. 98, Article 101452.
- Wilson, R.C., Hancock, E.R., Pekalska, E., and Duin, R.P.W., Spherical and Hyperbolic Embedding of Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, Vol. 36, No. 11, pp. 2255-2269, 2014. https://doi.org/10.1109/TPAMI.2014.2316836
- Xie, J., Girshick, R., and Farhadi, A., Unsupervised Deep Embedding for Clustering Analysis, Proceedings of the 33rd International Conference on Machine Learning, 2016, pp. 478-487.
- Zhang, Z., Huang, K., and Tan, T., Comparison of Similarity Measures for Trajectory Clustering in Outdoor Surveillance Scene, 18th IEEE International Conference on Pattern Recognition, 2006, pp. 1135-1138.