DOI QR코드

DOI QR Code

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Received : 2021.09.14
  • Accepted : 2021.10.05
  • Published : 2021.12.30

Abstract

Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Keywords

Acknowledgement

Anonymous reviewers are thanked for their very constructive reviews and comments, which greatly improved this paper. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20211710200010C and No. 20201510100020).

References

  1. S. Yoon, K. Park, and H. Yun, "Analysis of Characteristics of Spent Fuels on Long-Term Dry Storage Condition", J. Nucl. Fuel Cycle Waste Technol., 19(2), 205-214 (2021). https://doi.org/10.7733/jnfcwt.2021.19.2.205
  2. V.V.M. Ferreira, R.P. Mourao, P.M. Fleming, W.A. Soares, L.T.P. Braga, and R.A.M. Santos, "Public Perception on Nuclear Energy and Radioactive Waste Storage", 2009 International Nuclear Atlantic Conference, Available from: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/41/072/41072586.pdf, INAC, RJ (2009).
  3. M. Greenberg, "Nuclear Waste Management, Nuclear Power, and Energy Choices", Springer-Verlang, London (2013).
  4. H. Herring, "Opposition to Nuclear Power: A Brief History", in: Nuclear or Not? Does Nuclear Power Have a Place in a Sustainable Energy Future?, D. Elliott, 34-49, Palgrave Macmillan, New York (2010).
  5. R. Lidskog and A.C. Andersson, "The Management of Radioactive Waste. A Description of Ten Countries", Swedish Nuclear Fuel and Waste Management, Available from: http://www.skb.se/publication/19408/The%20management.pdf (2002).
  6. N.T. Rempe, "Permanent Underground Repositories for Radioactive Waste", Prog. Nucl. Energy, 49(5), 365-374 (2007). https://doi.org/10.1016/j.pnucene.2007.04.002
  7. P. Ocelik, J. Osicka, V. Zapletalova, F. Cernoch, and B. Dancak, "Local Opposition and Acceptance of Deep Geological Repository of Radioactive Waste in the Czech Republic: A Frame Analysis", Energy Policy, 105, 458-466 (2017). https://doi.org/10.1016/j.enpol.2017.03.025
  8. International Atomic Energy Agency, Siting of Geological Disposal Facilities, IAEA Safety Guides, Safety Series No. 111-G-41 (1994).
  9. B.G. Chae, J. Choi, Y.H. Kihm, and S.I. Park, "Geological Structural Parameters to be Considered for Siting of HLW Repository: A Review for Case Studies of Foreign Countries", J. Geol. Soc. Korea, 53(1), 207-219 (2017) (in Korean With English Abstract). https://doi.org/10.14770/jgsk.2017.53.1.207
  10. J. Choi, B.G. Chae, Y.H. Khim, E.S. Park, S. Hyun, H.C. Kim, W.H. Nahm, J.S. Jeon, and H. Suk, "Suggestion of Site Investigation Method for HLW Disposal Facility", J. Korean Soc. Miner. Energy Resour. Eng., 54(4), 303-318 (2017) (in Korean With English Abstract). https://doi.org/10.12972/ksmer.2017.54.4.303
  11. E. Kim, Y.H. Kihm, D.S. Cheon, S.P. Hyun, J.S. Jeon, H.C. Kim, W.H. Nahm, H. Suk, K. Jin, K.T. Ko, and S. Choi, "Development of Geoscientific Site Assessment Factors for the Deep Geological Disposal of HLW in South Korea", J. Korean Soc. Miner. Energy Resour. Eng., 57(2), 215-233 (2020) (in Korean With English Abstract). https://doi.org/10.32390/ksmer.2020.57.2.215
  12. M.G. Bonilla, R.K. Mark, and J.J. Lienkaemper, "Statistical Relations Among Earthquake Magnitude, Surface Rupture Length, and Surface Fault Displacement", Bull. Seismol. Soc. Am., 74(6), 2379-2411 (1984).
  13. J.G. Anderson, P. Bodin, J.N. Brune, J. Prince, S.K. Singh, R. Quaas, and M. Onate, "Strong Ground Motion From the Michoacan, Mexico, Earthquake", Science, 233(4768), 1043-1049 (1986). https://doi.org/10.1126/science.233.4768.1043
  14. E.J. Fielding, M. Talebian, P.A. Rosen, H. Nazari, J.A. Jackson, M. Ghorashi, and R. Walker, "Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation", J. Geophys. Res. Solid Earth, 110(B3), B03302 (2005).
  15. A. Barka, H.S. Akyuz, E. Altunel, G. Sunai, Z. Cakir, A. Dikbas, B. Yerli, R. Armijo, B. Meyer, J.B. De Chabalier, T. Rockwell, J.R. Dolan, R. Hartleb, T. Dawson, S. Christofferson, A. Tucker, T. Fumal, R. Langridge, H. Stenner, W. Lettis, J. Bachhuber, and W. Page, "The Surface Rupture and Slip Distribution of the 17 August 1999 Izmit Earthquake (M 7.4), North Anatolian Fault", Bull. Seismol. Soc. Am., 92(1), 43-60 (2002). https://doi.org/10.1785/0120000841
  16. Y. Ota, Y.G. Chen, and W.S. Chen, "Review of Paleoseismological and Active Fault Studies in Taiwan in the light of the Chichi Earthquake of September 21, 1999", Tectonophysics, 408(1-4), 63-77 (2005). https://doi.org/10.1016/j.tecto.2005.05.040
  17. K. Jin and Y.S. Kim, "Evaluation on Geological Structures to Secure Long-term Safety of Nuclear Facility Sites", Econ. Environ. Geol., 51(2), 149-166 (2018) (in Korean With English Abstract). https://doi.org/10.9719/EEG.2018.51.2.149
  18. K. Jin and Y.S. Kim, "The Important of Surface Ruptures and Fault Damage Zones in Earthquake Hazard Assessment: A Review and New Suggestions", in: Characterization of Modern and Historical Seismic-Tsunamic Events, and Their Global-Societal Impacts, Y. Dilek, Y. Ogawa, and Y. Okubo, eds., 501, 205-224, Special Publications, Geological Society, London (2021).
  19. M.W. Putz-Perrier and D.J. Sanderson, "The Distribution of Faults and Fractures and Their Importance in Accommodating Extensional Strain at Kimmeridge Bay, Dorset, UK", in: The Internal Structures of Fault zones: Implications for Mechanical and Fluid-Flow Properties, C.A.J. Wibberley, W. Kurz, J. Imber, R.E. Holdworth, and C. Collettini, eds., 299, 97-111, Special Publications, Geological Society, London (2008).
  20. J.S. Caine, J.P. Evans, and C.B. Forster, "Fault Zone Architecture and Permeability Structure", Geology, 24(11), 1025-1028 (1996). https://doi.org/10.1130/0091-7613(1996)024<1025:fzaaps>2.3.co;2
  21. A. Billi, F. Salvini, and F. Storti, "The Damage Zone-fault Core Transition in Carbonate Rocks: Implication for Fault Growth, Structure and Permeability", J. Struct. Geol., 25(11), 1779-1794 (2003). https://doi.org/10.1016/S0191-8141(03)00037-3
  22. Y.S. Kim and D.J. Sanderson, "The Relationship Between Displacement and Length of Faults: A Review", Earth Sci. Rev., 68(3-4), 317-334 (2005). https://doi.org/10.1016/j.earscirev.2004.06.003
  23. J. Watterson, "Fault Dimension, Displacement and Growth", Pageoph, 124, 365-373 (1986). https://doi.org/10.1007/BF00875732
  24. J. Walsh and J. Watterson, "Analysis of the Relationship Between Displacement and Dimensions of Faults", J. Struct. Geol., 10(3), 239-247 (1988). https://doi.org/10.1016/0191-8141(88)90057-0
  25. N.H. Dawers, M.H. Anders, and C.H. Scholz, "Growth of Normal Faults: Displacement-length Scaling", Geology, 21(12), 1107-1110 (1993).
  26. J.A. Cartwright, B.D. Trudgill, and C.S. Mansfield, "Fault Growth by Segment Linkage: An Explanation for Scatter in Maximum Displacement and Trace Length Data From the Canyonlands Grabens of SE Utah", J. Struct. Geol., 17(9), 1319-1326 (1995). https://doi.org/10.1016/0191-8141(95)00033-A
  27. E.J.M. Willemse, D.D. Pollard, and A. Aydin, "Three-dimensional Analyses of Slip Distributions on Normal Fault Arrays With Consequences for Fault Scaling", J. Struct. Geol., 18(2-3), 295-309 (1996). https://doi.org/10.1016/S0191-8141(96)80051-4
  28. R.A. Schulz and H. Fossen, "Displacement-length Scaling in Three Dimensions: The Importance of Aspect Ratio and Application to Deformation Bands", J. Struct. Geol., 24(9), 1389-1411 (2002). https://doi.org/10.1016/S0191-8141(01)00146-8
  29. D.L. Wells and K.J. Coppersmith, "New Empirical Relationships Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement", Bull. Seismol. Soc. Am., 84(4), 974-1002 (1994).
  30. P.A. Cowie and C.H. Scholz, "Displacement-length Scaling Relationship for Faults: Data Synthesis and Discussion", J. Struct. Geol., 14(10), 1149-1156 (1992). https://doi.org/10.1016/0191-8141(92)90066-6
  31. R.H. Sibson, "Thickness of the Seismic Slip Zone", Bull. Seismol. Soc. Am., 93(3), 1169-1178 (2003). https://doi.org/10.1785/0120020061
  32. A. Lin and K. Yamashita, "Spatial Variations in Damage Zone Width Along Strike-slip Faults: An Example From Active Faults in Southwest Japan", J. Struct. Geol., 57, 1-15 (2013). https://doi.org/10.1016/j.jsg.2013.10.006
  33. L. Smith, C.B. Forster, and J.P. Evans, "Interaction Between Fault Zones, Fluid Flow, and Heat Transfer at the Basin Scale", in: Hydrogeology of Low Permeability Environments, S.P. Newman and I. Neretnieks, eds, Hydrogeology V.2, 41-67, International Association of Hydrological Sciences, Potsdam (1990).
  34. R.L. Bruhn, W.T. Parry, W.A. Yonkee, and T. Thompson, "Fracturing and Hydrothermal Alteration in Normal Fault Zones", Pure Appl. Geophys., 142, 609-644 (1994). https://doi.org/10.1007/BF00876057
  35. G. Mandl, Faulting in Brittle Rocks: An Introduction to the Mechanics of Tectonic Faults, Springer, Berlin (2000).
  36. R. Heermance, Z.K. Shipton, and J.P. Evans, "Fault Structure Control on Fault Slip and Ground Motion During the 1999 Rupture of the Chelungpu Fault, Taiwan", Bull. Seismol. Soc. Am., 93(3), 1034-1050 (2003). https://doi.org/10.1785/0120010230
  37. D.C.P. Peacock and D.J. Sanderson, "Displacement, Segment Linkage and Relay Ramps in Normal Fault Zones", J. Struct. Geol., 13(6), 721-733 (1991). https://doi.org/10.1016/0191-8141(91)90033-F
  38. A.G. McGrath and I. Davison, "Damage Zone Geometry Around Fault Tips", J. Struct. Geol., 17(7), 1011-1024 (1995). https://doi.org/10.1016/0191-8141(94)00116-H
  39. Y.S. Kim, D.C.P. Peacock, and D.J. Sanderson, "Mesoscale Strike-slip Faults and Damage Zones at Marsalforn, Gozo Island, Malta", J. Struct. Geol., 25(5), 793-812 (2003). https://doi.org/10.1016/S0191-8141(02)00200-6
  40. Y.S. Kim, D.C.P. Peacock, and D.J. Sanderson, "Fault Damage Zones", J. Struct. Geol., 26(3), 503-517 (2004). https://doi.org/10.1016/j.jsg.2003.08.002
  41. J.M. Vermilye and C.H. Scholz, "Fault Propagation and Segmentation: Insight From the Microstructural Examination of a Small Fault", J. Struct. Geol., 21(11), 1623-1636 (1999). https://doi.org/10.1016/S0191-8141(99)00093-0
  42. Y.S. Kim and D.J. Sanderson, "Structural Similarity and Variety at the Tips in a Wide Range of Strike-slip Faults: A Review", Terra Nova, 18(5), 330-344 (2006). https://doi.org/10.1111/j.1365-3121.2006.00697.x
  43. R.H. Sibson, "Stopping of Earthquake Ruptures at Dilational Fault Jogs", Nature, 316, 248-251 (1985). https://doi.org/10.1038/316248a0
  44. G.C.P. King, "Speculations on the Geometry of the Initiation and Termination Processes of Earthquake Rupture and its Relation to Morphology and Geological Structure", Pure Appl. Geophys., 124, 567-585 (1986). https://doi.org/10.1007/BF00877216
  45. K. Aki. Geometric Features of a Fault Zone Related to the Nucleation and Termination of an Earthquake Rupture, United States Geological Survey Open-File Report, 1-9, 89-315 (1989).
  46. W. Thatcher and M.G. Bonilla. Earthquake Fault Slip Estimation From Geologic, Geodetic and Seismologic Observations: Implications for Earthquake Mechanics and Fault Segmentation, United States Geological Survey Open-File Report, 386-399, 89-315 (1989).
  47. Y.S. Kim and D.J. Sanderson, "Earthquake and Fault Propagation, Displacement and Damage Zones", in: Structural Geology: New Research, S.J. Landowe and G.M. Hammler, eds., Nova Science Publisher Hauppauge, New York, 99-117 (2008).
  48. R.H. Sibson, "Structural Permeability of Fluid-driven Fault-fracture Meshes", J. Struct. Geol., 18(8), 1031-1042 (1996). https://doi.org/10.1016/0191-8141(96)00032-6
  49. S.J. Martel and W.A. Boger, "Geometry and Mechanics of Secondary Fracturing Around Small Three-dimensional Faults in Granitic Rock", J. Geophys. Res. Solid Earth, 103(B9), 21299-21314 (1998). https://doi.org/10.1029/98JB01393
  50. J.H. Choi, P. Edwards, K. Ko, and Y.S. Kim, "Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach", Earth Sci. Rev., 152, 70-87 (2016). https://doi.org/10.1016/j.earscirev.2015.11.006
  51. M.A. Jones and R.J. Knipe, "Seismic Attribute Maps: Application to Structural Interpretation and Fault Seal Analysis in the North Sea Basin", First Break, 14(12), 449-461 (1996).
  52. M.R. Heynekamp, L.B. Goodwin, P.S. Mozley, and W.C. Haneberg, "Controls of Fault-Zone Architecture in Poorly Lithified Sediments, Rio Grande Rift, New Mexico: Implications for Fault-Zone Permeability and Fluid Flow", in: Faults and Subsurface Fluid Flow in the Shallow Crust, L.B. Goodwin, P.S. Mozley, J.M. Moore, and W.C. Haneberg, eds., Geophysical Monograph 113, 27-49, American Geophysical Union, Washington (1999).
  53. L. Micarelli, I. Moretti, and J.M. Daniel, "Structural Properties of Rift-related Normal Faults: The Case Study of the Gulf of Corinth, Greece", J. Geodyn., 36(1-2), 275-303 (2003). https://doi.org/10.1016/S0264-3707(03)00051-6
  54. S.S. Berg and T. Skar, "Controls on Damage Zone Asymmetry of a Normal Fault Zone: Outcrop Analysis of a Segment of the Moab Fault, SE Utah", J. Struct. Geol., 27(10), 1803-1822 (2005). https://doi.org/10.1016/j.jsg.2005.04.012
  55. J.H. Choi, K. Jin, D. Enkhbayar, B. Davvasambuu, A. Bayasgalan, and Y.S. Kim, "Rupture Propagation Inferred From Damage Patterns, Slip Distribution, and Segmentation of the 1957 MW 8.1 Gobi-Altay Earthquake Rupture Along the Bogd Fault, Mongolia", J. Geophys. Res. Solid Earth, 117(B12), B12401 (2012).
  56. R.H. Sibson, "Earthquake Faulting as a Structural Process", J. Struct. Geol., 11(1-2), 1-14 (1989). https://doi.org/10.1016/0191-8141(89)90032-1
  57. A. Lin, M. Kikuchi, and B. Fu, "Rupture Segmentation and Process of the 2001 MW 7.8 Central Kunlun, China, Earthquake", Bull. Seismol. Soc. Am., 93(6), 2477-2492 (2003). https://doi.org/10.1785/0120020179
  58. A. Lin, B. Fu, J. Guo, Q. Zeng, G. Dang, W. He, and Y. Zhao, "Co-Seismic Strike-Slip and Rupture Length Produced by the 2001 MS 8.1 Central Kunlun Earthquake", Science, 296(5575), 2015-2017 (2002). https://doi.org/10.1126/science.1070879
  59. P.J. Haeussler, D.P. Schwartz, T.E. Dawson, H.D. Stenner, J.J. Lienkaemper, B. Sherrod, F.R. Cinti, P. Montone, P.A. Craw, A.J. Crone, and S.F. Personius, "Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M 7.9 Earthquake, Alaska", Bull. Seismol. Soc. Am., 94(6B), S23-S52 (2004). https://doi.org/10.1785/0120040626
  60. S.D. Knott, A. Beach, P.J. Brockbank, J.L. Brown, J.E. McCallum, and A.I. Welbon, "Spatial and Mechanical Controls on Normal Fault Populations", J. Struct. Geol., 18(2-3), 359-372 (1996). https://doi.org/10.1016/S0191-8141(96)80056-3
  61. K. Jin, Y.S. Kim, S.J. Yang, J.H. Choi, and K.O. Kim, "Deformation History and Characteristics of the Ilgwang Fault in Southeast Korea", Geosci. J., 22, 209-226 (2018). https://doi.org/10.1007/s12303-017-0037-1
  62. J.P. McCalpin, Paleoseismology, 2nd ed., Academic Press, San Diego (2009).
  63. F. Audemard et al., "Earthquake Environmental Effect for Seismic Hazard Assessment: The ESI Intensity Scale and the EEE Catalogue", in Memorie Descrittive Della Carta Geologica D'Italia, ISPRA, Roma (2015).
  64. R. Munier, L. Stenberg, R. Stanfors, A.G. Milnes, J. Hermanson, and C.A. Triumf. Geological Site Descriptive Model: A Strategy for the Model Development During Site Investigations, Svensk Karnbranslehantering AB Technical Report, SKB R-03-07 (2003).
  65. K.K.E. Neuendorf, J.P. Mehl, J.A. Jackson, and American Geological Institute, Glossary of Geology, 5th ed., American Geological Institute, Alexandria, Virginia (2005).
  66. D.B. Slemmon and R. McKinney, Definition of "Active Fault", Miscellaneous paper S-77-8, Final Report, U.S. Army Engineer Waterways Experiment Station Soil and Pavement Laboratory, Vicksburg (1977).
  67. R. Muir Wood and D.J. Mallard, "When is a Fault "Extinct?"", J. Geol. Soc. London, 149, 251-254 (1992). https://doi.org/10.1144/gsjgs.149.2.0251
  68. E. Boschi, D. Giardini, D. Pantosti, G. Valensise, R. Arrowsmith, P. Basham, R. Burgmann, A.J. Crone, A. Hull, R.K. McGuire, D. Schwartz, K. Sieh, S.N. Ward, and R.S. Yeats, "New Trends in Active Faulting Studies for Seismic Hazard Assessment", Annali di Geofisica, XXXIX(6), 1301-1307 (1996).
  69. International Atomic Energy Agency, "Seismic Hazards in Site Evaluation for Nuclear Installations", IAEA Safety Standards, Series No. SSG-9 (2010).
  70. Western States Seismic Policy Council, Active Fault Definition for the Basin and Range Province, WSSPC Policy Recommendation 97-1, White Paper, 3, San Francisco, CA (1997).
  71. M.N. Machette, "Active, Capable, and Potentially Active Faults-A Paleoseismic Perspective", J. Geodyn., 29(3-5), 387-392 (2000). https://doi.org/10.1016/S0264-3707(99)00060-5
  72. F.G.F. Gibb, "High-temperature, Very Deep, Geological Disposal: A Safer Alternative for High-level Radioactive Waste?", Waste Manage., 19(3), 207-211 (1999). https://doi.org/10.1016/S0956-053X(99)00050-1
  73. W.H. Hobbs, "Lineaments of the Atlantic Border Region", Geol. Soc. Am. Bull., 15(1), 483-506 (1904). https://doi.org/10.1130/gsab-15-483
  74. H. Ahmadi and E. Pekkan, "Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS-A Review", Geosciences, 11(5), 183 (2021). https://doi.org/10.3390/geosciences11050183