DOI QR코드

DOI QR Code

A Study on the Fracture Behavior of a Crack in 9% Ni Steel Considering Constraint Effect

구속효과를 고려한 9% Ni강 균열의 파괴거동 해석에 관한 연구

  • Received : 2021.10.05
  • Accepted : 2021.12.07
  • Published : 2021.12.31

Abstract

Inner shell material of LNG storage tanks that store ultra-low temperature LNG at -162℃ requires structural integrity assessment of a crack-like defect. From the viewpoint of conventional fracture mechanics, the assessment has mainly performed by single parameter using stress intensity factor K, J-integral and CTOD. However, the stresses in a material of crack tip are not unique caused by constraint loss due to size and geometry of the structure. Various attempts have been made to complement a single parameter fracture mechanics, typically with Q-stress. In this paper, we have performed a two-parameter approach by deriving the Q-stress coupling with J-integral suitable for the evaluation of the crack tip stress field in the non-linear elastic region. A quantitative evaluation of the constraint effect has performed by using the J-Q approach. It was evaluated that the SENB type specimen had a crack ratio of 0.1 to 0.7 and the wide type specimen had a crack ratio of 0.2 to 0.6.

-162℃ 초저온 상태의 LNG를 저장하는 저장탱크의 내조는 균열과 같은 결함에 대한 구조 건전성 평가가 필요하다. 전통적인 파괴역학 관점에서는 응력확대계수 K, J-적분 그리고 CTOD를 이용한 단일 매개변수 평가가 주로 수행되어왔다. 그러나 실제 구조에서 발생되는 균열선단은 구조물의 크기, 시편형상 그리고 인장과 굽힘과 같은 하중의 형태에 따라 구속효과의 차이로 인한 영향이 발생하게 된다. 단일 매개변수 파괴역학을 보완하기 위해 다양한 시도가 있었고, 대표적으로 Q-응력법이 있다. 본 논문에서는 비선형 탄성영역의 균열선단 응력장 평가에 적합한 J적분에 Q응력을 유도하여 2 매개변수 접근법을 사용하고자 한다. SENB 시편의 균열비 0.1~0.7 그리고 광폭시편 균열비 0.2~0.6에 시편 균열선단의 응력을 J-Q 평가법을 이용하여 구속효과를 정량적으로 평가 하였다.

Keywords

References

  1. N.P. O'Dowd and C.F. Shih, "Family of Crack Tip Fields Characterized by a Triaxiality Parameter-I, Structure of Fields", Journal of Mechanics and Physics of Solids, 39(8), 989-1015, (1991) https://doi.org/10.1016/0022-5096(91)90049-T
  2. N.P. O'Dowd and C.F. Shih, "Family of Crack Tip Fields Characterized by a Triaxiality Parameter-II, Fracture Applications", Journal of Mechanics and Physics of Solids, 40(5), 939-963, (1992) https://doi.org/10.1016/0022-5096(92)90057-9
  3. J. Joyce, E. Hackett, and C. Roe, "Effects of Crack Depth and Mode of Loading on the J-R Curve Behavior of a High-Strength Steel in Constraint Effects in Fracture," ASTM STP1171, 239-263, (1993)
  4. J.H.Je, D.J. Kim, Y.J. Kim, "Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads", Trans. Korean Soc. Mech. Eng. A, 38(11), 1207-1214, (2014) https://doi.org/10.3795/KSME-A.2014.38.11.1207
  5. YK. Kim, B.T. Oh and J. H. Kim, "Effects of Crack Tip Constraint on the Fracture Toughness Assessment of 9% Ni Steel for Cryogenic Application in Liquefied Natural Gas Storage Tanks", MDPI Materials, 13(22), 5250, (2020)
  6. J.W. Hutchinson, "Singular Behavior of End of a Tensile Crack Tip in a Hardening Material", Journal of the Mechanics and Physics of Solids, 16(1), 13-31, (1968) https://doi.org/10.1016/0022-5096(68)90014-8
  7. J.R. Rice and G.F. Rosengren, "Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material", Journal of the Mechanics and Physics of Solids, 16(1), 1-12, (1968) https://doi.org/10.1016/0022-5096(68)90013-6
  8. N.P. O'Dowd and C.F. Shih, "Family of Crack Tip Fields Characterized by a Triaxiality Parameter-I, Structure of Fields", Journal of Mechanics and Physics of Solids, 39(8), 989-1015, (1991) https://doi.org/10.1016/0022-5096(91)90049-T
  9. N.P. O'Dowd and C.F. Shih, "Family of Crack Tip Fields Characterized by a Triaxiality Parameter-II, Fracture Applications", Journal of Mechanics and Physics of Solids, 40(5), 939-963, (1992) https://doi.org/10.1016/0022-5096(92)90057-9
  10. Y. J. Kim, N.S. Huh and Y.J. Kim, "On Relevant Ramberg-Osgood Fit to Engineering Non-Linear Fracture Mechanics Analysis", Transactions of the Korean Society of Mechanical Engineers. A., .27(9), 1571 - 1578, (2004)
  11. Y. Shi, S. Sun, H. Murakawa and Y. Ueda, "Finite Element Analysis on Relationships Between the J-Integral and CTOD for Stationary Cracks in Welded Tensile Specimens", Int. J. Pressure Vessels Piping, 75(3), 197-202, (1998) https://doi.org/10.1016/S0308-0161(98)00002-7
  12. S. K. Kudari, and K. G. Kodancha, "On the Relationship Between J-Integral and CTOD for CT and SENB Specimens", Fratt. Integrita Strutturale, 2(6), 3-10, (2008) https://doi.org/10.3221/IGF-ESIS.06.01
  13. ASTM International, "Standard Test Method for Measurement of Fracture Toughness", Report No. ASTM E1820-09, (2009)