과제정보
We would like to thank Dr. T Nakamura at RIKEN for the HRESIMS measurements. This work was supported by the National Research Foundation of Korea (NRF) (Grant No. NRF-2021M3H9A1037439) and the KRIBB Research Initiative Program (KGM5292113 and JHM0022111) funded by the Ministry of Science ICT (MSIT) of the Republic of Korea. We thank the Korea Basic Science Institute, Ochang, Korea, for providing the NMR (700 and 800MHz) and HR-ESI-MS.
참고문헌
- Newman DJ, Cragg GM. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83: 770-803. https://doi.org/10.1021/acs.jnatprod.9b01285
- Butler MS, Robertson AA, Cooper MA. 2014. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 31: 1612-1661. https://doi.org/10.1039/C4NP00064A
- Berdy J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1-26. https://doi.org/10.1038/ja.2005.1
- Genilloud O, Gonzalez I, Salazar O, Martin J, Tormo JR, Vicente F. 2011. Current approaches to exploit actinomycetes as a source of novel natural products. J. Ind. Microbiol. Biotechnol. 38: 375-389. https://doi.org/10.1007/s10295-010-0882-7
- Osada H. 2000. in Bioprobes, pp. 1-14. Ed. Springer, Berlin.
- Osada H. 2009. Chemical biology based on small molecule-protein interaction, pp. 1-10. Ed. Wiley, New Jersey.
- Jang JP, Takahashi S, Futamura Y, Nogawa T, Jang JH, Ahn JS, et al. 2017. RK-144171, a new benadrostin derivative produced by Streptomyces sp. RK88-1441. J. Antibiot. 70: 102-104. https://doi.org/10.1038/ja.2016.65
- Osada H, Ishinabe K, Yano T, Kajikawa K, Isono K. 1990. New pyrrolobenzodiazepine antibiotics, RK-1441A and B. I. Biological properties. Agric. Biol. Chem. 54: 2875-2881. https://doi.org/10.1271/bbb1961.54.2875
- Jizba JV, Sedmera P, Vanek Z, Drautz H, Zahner H. 1985. Two thiolactones from Streptomyces Tu 2476. J. Antibiot. 38: 111-112. https://doi.org/10.7164/antibiotics.38.111
- Meguro H, Konno T, Tuzimura K.1972. Circular dichroism of thiolo-g-lactones and their configurations and conformations. Tetrahedron Lett. 31: 3165-3168. https://doi.org/10.1016/S0040-4039(01)93993-0
- Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, et al. 2016. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer's disease: understanding the therapeutics strategies. Mol. Neurobiol. 53: 648-661. https://doi.org/10.1007/s12035-014-9053-6
- Beyrent E, Gomez G. 2020. Oxidative stress differentially induces tau dissociation from neuronal microtubules in neurites of neurons cultured from different regions of the embryonic Gallus domesticus brain. J. Neurosci. Res. 98: 734-747. https://doi.org/10.1002/jnr.24541
- Zhao H, Han Z, Ji X, Luo Y. 2016. Epigenetic regulation of oxidative stress in ischemic stroke. Aging Dis. 7: 295-306. https://doi.org/10.14336/ad.2015.1009
- Dias V, Junn E, Mouradian MM. 2013. The role of oxidative stress in Parkinson's disease. J. Parkinsons Dis. 3: 461-491. https://doi.org/10.3233/JPD-130230
- Simola N, Morelli M, Carta AR. 2007. The 6-hydroxydopamine model of Parkinson's disease. Neurotox. Res. 11: 151-167. https://doi.org/10.1007/BF03033565
- Jagmag SA, Tripathi N, Shukla SD, Maiti S, Khurana S. 2015. Evaluation of models of Parkinson's disease. Front. Neurosci. 9: 503. https://doi.org/10.3389/fnins.2015.00503
- Leanza WJ, Chupak LS, Tolman RL, Marburg S. 1992. Acidic derivatives of homocysteine thiolactone: utility as anionic linkers. Bioconjug. Chem. 3: 514-518. https://doi.org/10.1021/bc00018a009
- McCully KS, Vezeridis MP. 1988. Homocysteine thiolactone in arteriosclerosis and cancer. Res. Commun. Chem. Pathol. Pharmacol. 59: 107-119.
- de Barrio M, Tornero P, Prieto A, Sainza T, Zubeldia JM, Herrero T. 1997. Recurrent fixed drug eruption caused by citiolone. J. Investig. Allergol. Clin. Immunol. 7: 193-194.
- Miglio F, D'Ambro A, Stefanini GF, Corazza GR, Pesa O, Flacco L, et al. 1977. Use of citiolone in chronic hepatitides. Results of a research with clinical and laboratory controls. Minerva Med. 68: 3177-3192.