DOI QR코드

DOI QR Code

Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach

  • Shin, Juyoun (Department of Microbiology, The Catholic University of Korea, College of Medicine) ;
  • Shin, Sun (Department of Microbiology, The Catholic University of Korea, College of Medicine) ;
  • Jung, Seung-Hyun (Department of Biochemistry, The Catholic University of Korea, College of Medicine) ;
  • Park, Chulmin (Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary's Hospital) ;
  • Cho, Sung-Yeon (Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary's Hospital) ;
  • Lee, Dong-Gun (Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary's Hospital) ;
  • Chung, Yeun-Jun (Department of Microbiology, The Catholic University of Korea, College of Medicine)
  • Received : 2021.03.26
  • Accepted : 2021.09.09
  • Published : 2021.11.28

Abstract

Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsis-causing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI.

Keywords

Acknowledgement

This study was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by Ministry of Health & Welfare, Republic of Korea (Grant number: H14C2658 and HI14C3417) and National Research Foundation of Korea (2015M3C7A1064778, 2019R1A5A2027588, 2017M3C9A6047615).

References

  1. Itokazu GS, Quinn JP, Bell-Dixon C, Kahan FM, Weinstein RA. 1996. Antimicrobial resistance rates among aerobic gram-negative bacilli recovered from patients in intensive care units: evaluation of a national postmarketing surveillance program. Clin. Infect. Dis. 23: 779-784. https://doi.org/10.1093/clinids/23.4.779
  2. System N. 1999. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1990-May 1999, issued June 1999. A report from the NNIS system. Am. J. Infect. Control. 27: 520-532. https://doi.org/10.1016/S0196-6553(99)70031-3
  3. Ling TK, Xiong J, Yu Y, Lee CC, Ye H, Hawkey PM. 2006. Multicenter antimicrobial susceptibility survey of gram-negative bacteria isolated from patients with community-acquired infections in the People's Republic of China. Antimicrob. Agents Chemother. 50: 374-378. https://doi.org/10.1128/AAC.50.1.374-378.2006
  4. Talbot GH, Bradley J, Edwards JE, Jr., Gilbert D, Scheld M, Bartlett JG, et al. 2006. Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of America. Clin. Infect. Dis. 42: 657-668. https://doi.org/10.1086/499819
  5. Kollef MH. 2000. Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized patients. Clin. Infect. Dis. 31 Suppl 4: S131-138. https://doi.org/10.1086/314079
  6. Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH. 2011. Inappropriate antibiotic therapy in Gram-negative sepsis increases hosrufpital length of stay. Crit. Care Med. 39: 46-51. https://doi.org/10.1097/CCM.0b013e3181fa41a7
  7. Bassetti M, Righi E, Carnelutti A. 2016. Bloodstream infections in the Intensive Care Unit. Virulence 7: 267-279. https://doi.org/10.1080/21505594.2015.1134072
  8. Lachmayr KL, Kerkhof LJ, Dirienzo AG, Cavanaugh CM, Ford TE. 2009. Quantifying nonspecific TEM beta-lactamase (blaTEM) genes in a wastewater stream. Appl. Environ. Microbiol. 75: 203-211. https://doi.org/10.1128/AEM.01254-08
  9. Kollef MH. 2001. Optimizing antibiotic therapy in the intensive care unit setting. Crit. Care. 5: 189-195. https://doi.org/10.1186/cc1022
  10. Kumar A. 2010. Early antimicrobial therapy in severe sepsis and septic shock. Curr. Infect. Dis. Rep. 12: 336-344. https://doi.org/10.1007/s11908-010-0128-x
  11. Procop GW. 2007. Molecular diagnostics for the detection and characterization of microbial pathogens. Clin. Infect. Dis. 45 Suppl 2: S99-S111. https://doi.org/10.1086/519259
  12. Hansen WL, Beuving J, Bruggeman CA, Wolffs PF. 2010. Molecular probes for diagnosis of clinically relevant bacterial infections in blood cultures. J. Clin. Microbiol. 48: 4432-4438. https://doi.org/10.1128/JCM.00562-10
  13. Opota O, Jaton K, Greub G. 2015. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin. Microbiol. Infect. 21: 323-331. https://doi.org/10.1016/j.cmi.2015.02.005
  14. Shin GW, Jung SH, Yim SH, Chung B, Yeol Jung G, Chung YJ. 2012. Stuffer-free multiplex ligation-dependent probe amplification based on conformation-sensitive capillary electrophoresis: a novel technology for robust multiplex determination of copy number variation. Electrophoresis 33: 3052-3061. https://doi.org/10.1002/elps.201200334
  15. Chung B, Park C, Cho SY, Shin S, Yim SH, Jung GY, et al. 2016. Multiplex identification of drug-resistant Gram-positive pathogens using stuffer-free MLPA system. Electrophoresis 37: 3079-3083. https://doi.org/10.1002/elps.201600372
  16. Chung B, Park C, Cho SY, Shin J, Shin S, Yim SH, et al. 2018. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood. Electrophoresis 39: 645-652. https://doi.org/10.1002/elps.201700405
  17. Wellinghausen N, Kochem AJ, Disque C, Muhl H, Gebert S, Winter J, et al. 2009. Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J. Clin. Microbiol. 47: 2759-2765. https://doi.org/10.1128/JCM.00567-09
  18. Leitner E, Kessler HH, Spindelboeck W, Hoenigl M, Putz-Bankuti C, Stadlbauer-Kollner V, et al. 2013. Comparison of two molecular assays with conventional blood culture for diagnosis of sepsis. J. Microbiol. Methods 92: 253-255. https://doi.org/10.1016/j.mimet.2012.12.012
  19. Skvarc M, Stubljar D, Rogina P, Kaasch AJ. 2013. Non-culture-based methods to diagnose bloodstream infection: Does it work? Eur. J. Microbiol. Immunol. (Bp) 3: 97-104. https://doi.org/10.1556/EuJMI.3.2013.2.2
  20. Roberts CH, Last A, Molina-Gonzalez S, Cassama E, Butcher R, Nabicassa M, et al. 2013. Development and evaluation of a next-generation digital PCR diagnostic assay for ocular Chlamydia trachomatis infections. J. Clin. Microbiol. 51: 2195-2203. https://doi.org/10.1128/JCM.00622-13
  21. Devonshire AS, O'Sullivan DM, Honeyborne I, Jones G, Karczmarczyk M, Pavsic J, et al. 2016. The use of digital PCR to improve the application of quantitative molecular diagnostic methods for tuberculosis. BMC Infect. Dis. 16: 366. https://doi.org/10.1186/s12879-016-1696-7
  22. Ricchi M, Bertasio C, Boniotti MB, Vicari N, Russo S, Tilola M, et al. 2017. Comparison among the quantification of bacterial pathogens by qPCR, dPCR, and cultural methods. Front. Microbiol. 8: 1174. https://doi.org/10.3389/fmicb.2017.01174
  23. Cave L, Brothier E, Abrouk D, Bouda PS, Hien E, Nazaret S. 2016. Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues. Appl. Microbiol. Biotechnol. 100: 10597-10608. https://doi.org/10.1007/s00253-016-7950-5
  24. Pavlovic M, Luze A, Konrad R, Berger A, Sing A, Busch U, et al. 2011. Development of a duplex real-time PCR for differentiation between E. coli and Shigella spp. J. Appl. Microbiol. 110: 1245-1251. https://doi.org/10.1111/j.1365-2672.2011.04973.x
  25. McConnell MJ, Perez-Ordonez A, Perez-Romero P, Valencia R, Lepe JA, Vazquez-Barba I, et al. 2012. Quantitative real-time PCR for detection of Acinetobacter baumannii colonization in the hospital environment. J. Clin. Microbiol. 50: 1412-1414. https://doi.org/10.1128/JCM.06566-11
  26. Martin-Pena R, Dominguez-Herrera J, Pachon J, McConnell MJ. 2013. Rapid detection of antibiotic resistance in Acinetobacter baumannii using quantitative real-time PCR. J. Antimicrob. Chemother. 68: 1572-1575. https://doi.org/10.1093/jac/dkt057
  27. El-Badawy MF, Tawakol WM, El-Far SW, Maghrabi IA, Al-Ghamdi SA, Mansy MS, et al. 2017. Molecular identification of aminoglycoside-modifying enzymes and plasmid-mediated quinolone resistance genes among Klebsiella pneumoniae clinical isolates recovered from Egyptian patients. Int. J. Microbiol. 2017: 8050432.
  28. Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B. 2007. Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J. Microbiol. Methods 70: 20-29. https://doi.org/10.1016/j.mimet.2007.03.008
  29. Dutour C, Bonnet R, Marchandin H, Boyer M, Chanal C, Sirot D, et al. 2002. CTX-M-1, CTX-M-3, and CTX-M-14 beta-lactamases from Enterobacteriaceae isolated in France. Antimicrob. Agents Chemother. 46: 534-537. https://doi.org/10.1128/AAC.46.2.534-537.2002
  30. Naas T, Ergani A, Carrer A, Nordmann P. 2011. Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples. Antimicrob. Agents Chemother. 55: 4038-4043. https://doi.org/10.1128/aac.01734-10
  31. Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. 2012. Rapid detection of carbapenemase genes by multiplex real-time PCR. J. Antimicrob. Chemother. 67: 906-909. https://doi.org/10.1093/jac/dkr563
  32. Purcell RV, Pearson J, Frizelle FA, Keenan JI. 2016. Comparison of standard, quantitative and digital PCR in the detection of enterotoxigenic bacteroides fragilis. Sci. Rep. 6: 34554. https://doi.org/10.1038/srep34554
  33. Dong L, Wang S, Fu B, Wang J. 2018. Evaluation of droplet digital PCR and next generation sequencing for characterizing DNA reference material for KRAS mutation detection. Sci. Rep. 8: 9650. https://doi.org/10.1038/s41598-018-27368-3
  34. Kwon JC, Kim SH, Choi JK, Cho SY, Park YJ, Park SH, et al. 2013. Epidemiology and clinical features of bloodstream infections in hematology wards: one year experience at the catholic blood and marrow transplantation center. Infect. Chemother. 45: 51-61. https://doi.org/10.3947/ic.2013.45.1.51
  35. Vincent JL, Brealey D, Libert N, Abidi NE, O'Dwyer M, Zacharowski K, et al. 2015. Rapid diagnosis of infection in the critically Ill, a multicenter study of molecular detection in bloodstream infections, pneumonia, and sterile site infections. Crit. Care Med. 43: 2283- 2291. https://doi.org/10.1097/CCM.0000000000001249
  36. Mitchell G, Chen C, Portnoy DA. 2016. Strategies used by bacteria to grow in macrophages. Microbiol. Spectr. 4: 10.1128/microbiolspec.MCHD-0012-2015.
  37. Kaufmann SHE, Dorhoi A. 2016. Molecular determinants in phagocyte-bacteria interactions. Immunity 44: 476-491. https://doi.org/10.1016/j.immuni.2016.02.014
  38. Horakova K, Mlejnkova H, Mlejnek P. 2008. Specific detection of Escherichia coli isolated from water samples using polymerase chain reaction targeting four genes: cytochrome bd complex, lactose permease, beta-D-glucuronidase, and beta-D-galactosidase. J. Appl. Microbiol. 105: 970-976. https://doi.org/10.1111/j.1365-2672.2008.03838.x
  39. Qin X, Emerson J, Stapp J, Stapp L, Abe P, Burns JL. 2003. Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis. J. Clin. Microbiol. 41: 4312-4317. https://doi.org/10.1128/JCM.41.9.4312-4317.2003
  40. Lee A, Mirrett S, Reller LB, Weinstein MP. 2007. Detection of bloodstream infections in adults: how many blood cultures are needed? J. Clin. Microbiol. 45: 3546-3548. https://doi.org/10.1128/JCM.01555-07
  41. Li Y, Yang X, Zhao W. 2017. Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing. SLAS Technol. 22: 585-608. https://doi.org/10.1177/2472630317727519