Acknowledgement
This work was supported by Anhui Provincial Natural Science Foundation (1908085MH252, 2008085QH405), Anhui Provincial Natural Science Research Project of University (KJ2018A0233), and 512 Talent Cultivation Plan of Bengbu Medical College (by51201309).
References
- Qian J, Chen R, Wang H, Zhang X. 2020. Role of the PE/PPE family in host-pathogen interactions and prospects for anti-tuberculosis vaccine and diagnostic tool design. Front. Cell Infect. Microbiol. 10: 594288. https://doi.org/10.3389/fcimb.2020.594288
- Wang Y, Li Z, Wu S, Fleming J, Li C, Zhu G, et al. 2021. Systematic evaluation of Mycobacterium tuberculosis proteins for antigenic properties identifies Rv1485 and Rv1705c as potential protective subunit vaccine candidates. Infect. Immun. 89: e00585-20.
- Global tuberculosis Report 2020. WHO. https://apps.who.int/iris/handle/10665/336069.
- Glaziou P. 2020. Predicted impact of the COVID-19 pandemic on global tuberculosis deaths in 2020. medRxiv 2020.04.28.20079582.
- Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537-544. https://doi.org/10.1038/31159
- Deng W, Xie J. 2012. Ins and outs of Mycobacterium tuberculosis PPE family in pathogenesis and implications for novel measures against tuberculosis. J. Cell. Biochem. 113: 1087-95. https://doi.org/10.1002/jcb.23449
- De Maio F, Berisio R, Manganelli R, Delogu G. 2020. PE_PGRS proteins of Mycobacterium tuberculosis: a specialized molecular task force at the forefront of host-pathogen interaction. Virulence 11: 898-915. https://doi.org/10.1080/21505594.2020.1785815
- Bottai D, Brosch R. 2009. Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families. Mol. Microbiol. 73: 325-328. https://doi.org/10.1111/j.1365-2958.2009.06784.x
- Cohen I, Parada C, Acosta-Gio E, Espitia C. 2014. The PGRS domain from PE_PGRS33 of Mycobacterium tuberculosis is target of humoral immune response in mice and humans. Front. Immunol. 5: 236. https://doi.org/10.3389/fimmu.2014.00236
- De Maio F, Maulucci G, Minerva M, Anoosheh S, Palucci I, Iantomasi R, et al. 2014. Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria. PLoS One 9: e112482. https://doi.org/10.1371/journal.pone.0112482
- Yang W, Deng W, Zeng J, Ren S, Ali MK, Gu Y, et al. 2017. Mycobacterium tuberculosis PE_PGRS18 enhances the intracellular survival of M. smegmatis via altering host macrophage cytokine profiling and attenuating the cell apoptosis. Apoptosis 22: 502-509. https://doi.org/10.1007/s10495-016-1336-0
- Deng W, Long Q, Zeng J, Li P, Yang W, Chen X, et al. 2017. Mycobacterium tuberculosis PE_PGRS41 enhances the intracellular survival of M. smegmatis within macrophages via blocking innate immunity and inhibition of host defense. Sci. Rep. 7: 46716. https://doi.org/10.1038/srep46716
- Karboul A, Gey van Pittius NC, Namouchi A, Vincent V, Sola C, et al. 2006. Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair. BMC. Evol. Biol. 6: 107. https://doi.org/10.1186/1471-2148-6-107
- Bachhawat N. 2018. PE-only/PE_PGRS proteins of Mycobacterium tuberculosis contain a conserved tetra-peptide sequence DEVS/DXXS that is a potential caspase-3 cleavage motif. J. Biosci. 43: 597-604. https://doi.org/10.1007/s12038-018-9775-0
- Ermolaeva MD. 2001. Synonymous codon usage in bacteria. Curr. Issues Mol. Biol. 3: 91-97.
- Sorensen MA, Kurland CG. 1989. Pedersen S. Codon usage determines translation rate in Escherichia coli. J. Mol. Biol. 207: 365-377. https://doi.org/10.1016/0022-2836(89)90260-x
- Kopke K, Hoff B, Kuck U. 2010. Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl. Environ. Microbiol. 76: 4664-4674. https://doi.org/10.1128/AEM.00670-10
- Jhamb K, Sahoo DK. 2012. Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase. Bioresour. Technol. 123: 135-143. https://doi.org/10.1016/j.biortech.2012.07.011
- Tian S, Chen H, Sun T, Wang H, Zhang X, Liu Y, et al. 2016. Expression, purification and characterization of Esx-1 secretionassociated protein EspL from Mycobacterium tuberculosis. Protein Expr. Purif. 128: 42-51. https://doi.org/10.1016/j.pep.2016.08.001
- Yu X, Feng J, Huang L, Gao H, Liu J, Bai S, et al. 2019. Molecular basis underlying host immunity subversion by Mycobacterium tuberculosis PE/PPE family molecules. DNA. Cell Biol. 38: 1178-1187. https://doi.org/10.1089/dna.2019.4852
- Dheenadhayalan V, Delogu G, Sanguinetti M, Fadda G, Brennan MJ. 2006. Variable expression patterns of Mycobacterium tuberculosis PE_PGRS genes: evidence that PE_PGRS16 and PE_PGRS26 are inversely regulated in vivo. J. Bacteriol. 188: 3721-3725. https://doi.org/10.1128/JB.188.10.3721-3725.2006
- Srivastava V, Jain A, Srivastava BS, Srivastava R. 2008. Selection of genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice. Tuberculosis (Edinb) 88: 171-177. https://doi.org/10.1016/j.tube.2007.10.002
- Strong M, Sawaya MR, Wang S, Phillips M, Cascio D, Eisenberg D. 2006. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103: 8060-8065. https://doi.org/10.1073/pnas.0602606103
- Kaur J, Kumar A, Kaur J. 2018. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int. J. Biol. Macromol. 106: 803-822. https://doi.org/10.1016/j.ijbiomac.2017.08.080
- Young CL, Britton ZT, Robinson AS. 2012. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol. J. 7: 620-634. https://doi.org/10.1002/biot.201100155
- Arnau J, Lauritzen C, Petersen GE, Pedersen J. 2006. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein. Expr. Purif. 48: 1-13. https://doi.org/10.1016/j.pep.2005.12.002
- Kosobokova EN, Skrypnik KA, Kosorukov VS. 2016. Overview of fusion tags for recombinant proteins. Biochemistry (Mosc) 81: 187-200. https://doi.org/10.1134/s0006297916030019
- Bach H, Mazor Y, Shaky S, Shoham-Lev A, Berdichevsky Y, Gutnick DL, et al. 2001. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J. Mol. Biol. 312: 79-93. https://doi.org/10.1006/jmbi.2001.4914
- Park C, Zhou S, Gilmore J. 2007. Marqusee S: Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis. J. Mol. Biol. 368: 1426-1437. https://doi.org/10.1016/j.jmb.2007.02.091
- Sun P, Tropea JE, Waugh, DS. 2011. Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidinetagged maltose-binding protein as a fusion partner. Methods Mol. Biol. 705: 259-274. https://doi.org/10.1007/978-1-61737-967-3_16
- Lee SB, Choi R, Park SK, Kim YS. 2014. Production of bioactive chicken follistatin315 in Escherichia coli. Appl. Microbiol. Biotechnol. 98: 10041-10051. https://doi.org/10.1007/s00253-014-6139-z