DOI QR코드

DOI QR Code

Exploring Staphylococcus aureus Virulence Factors; Special Emphasis on Staphyloxanthin

  • Yehia, Fatma Al-zahraa A. (Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University) ;
  • Yousef, Nehal (Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University) ;
  • Askoura, Momen (Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University)
  • 투고 : 2021.07.19
  • 심사 : 2021.11.20
  • 발행 : 2021.12.28

초록

Staphylococcus aureus is a well-known pathogen that can cause diseases in humans. It can cause both mild superficial skin infections and serious deep tissue infections, including pneumonia, osteomyelitis, and infective endocarditis. To establish host infection, S. aureus manages a complex regulatory network to control virulence factor production in both temporal and host locations. Among these virulence factors, staphyloxanthin, a carotenoid pigment, has been shown to play a leading role in S. aureus pathogenesis. In addition, staphyloxanthin provides integrity to the bacterial cell membrane and limits host oxidative defense mechanisms. The overwhelming rise of Staphylococcus resistance to routinely used antibiotics has necessitated the development of novel anti-virulence agents to overcome this resistance. This review presents an overview of the chief virulence determinants in S. aureus. More attention will be paid to staphyloxanthin, which could be a possible target for anti-virulence agents.

키워드

참고문헌

  1. Pelz A, Wieland K-P, Putzbach K, Hentschel P, Albert K, Gotz F. 2005. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J. Biol. Chem. 280: 32493-32498. https://doi.org/10.1074/jbc.M505070200
  2. Aires de Sousa M, de Lencastre H. 2004. Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol. Med. Microbiol. 40: 101-111. https://doi.org/10.1016/S0928-8244(03)00370-5
  3. Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, et al. 2003. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect. Control Hosp. Epidemiol. 24: 362-386. https://doi.org/10.1086/502213
  4. Miller LG, Diep BA. 2008. Clinical practice: colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46: 752-760. https://doi.org/10.1086/526773
  5. Lowy FD. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
  6. Kazakova SV, Hageman JC, Matava M, Srinivasan A, Phelan L, Garfinkel B, et al. 2005. A clone of methicillin-resistant Staphylococcus aureus among professional football players. N. Engl. J. Med. 352: 468-475. https://doi.org/10.1056/NEJMoa042859
  7. Gould D, Chamberlaine A. 1995. Staphylococcus aureus: a review of the literature. J. Clin. Nurs. 4: 5-12. https://doi.org/10.1111/j.1365-2702.1995.tb00004.x
  8. Kong C, Neoh HM, Nathan S. 2016. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins 8: 72. https://doi.org/10.3390/toxins8030072
  9. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K-I, Oguchi A, et al. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359: 1819-1827. https://doi.org/10.1016/S0140-6736(02)08713-5
  10. Lowy FD. 1998. Staphylococcus aureus infections. New Engl. J. Med. 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
  11. Linares J. 2001. The VISA/GISA problem: therapeutic implications. Clin. Microbiol. Infect. 7 Suppl 4: 8-15. https://doi.org/10.1046/j.1469-0691.2001.00054.x
  12. Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, et al. 2013. Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J. Antimicrob. Chemother. 68: 1455-1464. https://doi.org/10.1093/jac/dkt072
  13. Foster TJ. 2004. The Staphylococcus aureus "superbug". J. Clin. Investig. 114: 1693-1696. https://doi.org/10.1172/JCI200423825
  14. Novick RP. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48: 1429-1449. https://doi.org/10.1046/j.1365-2958.2003.03526.x
  15. Zhu Y. 2010. Staphylococcus aureus virulence factors synthesis is controlled by central metabolism. Dissertations & Theses in Veterinary and Biomedical Science. 5.
  16. Foster TJ, Geoghegan JA, Ganesh VK, Hook M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12: 49-62. https://doi.org/10.1038/nrmicro3161
  17. Bien J, Sokolova O, Bozko P. 2011. Characterization of virulence factors of Staphylococcus aureus: Novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. J. Pathog. 2011: 601905. https://doi.org/10.4061/2011/601905
  18. Sabat A, Melles DC, Martirosian G, Grundmann H, van Belkum A, Hryniewicz W. 2006. Distribution of the serine-aspartate repeat protein-encoding sdr genes among nasal-carriage and invasive Staphylococcus aureus strains. J. Clin. Microbiol. 44: 1135-1138. https://doi.org/10.1128/JCM.44.3.1135-1138.2006
  19. George NP, Wei Q, Shin PK, Konstantopoulos K, Ross JM. 2006. Staphylococcus aureus adhesion via Spa, ClfA, and SdrCDE to immobilized platelets demonstrates shear-dependent behavior. Arterioscler. Thromb. Vasc. Biol. 26: 2394-2400. https://doi.org/10.1161/01.ATV.0000237606.90253.94
  20. Clarke SR, Andre G, Walsh EJ, Dufrene YF, Foster TJ, Foster SJ. 2009. Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect. Immun. 77: 2408-2416. https://doi.org/10.1128/IAI.01304-08
  21. Clarke SR, Foster SJ. 2008. IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect. Immun. 76: 1518-1526. https://doi.org/10.1128/IAI.01530-07
  22. Gomez MI, Lee A, Reddy B, Muir A, Soong G, Pitt A, et al. 2004. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat. Med. 10: 842-848. https://doi.org/10.1038/nm1079
  23. Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O'Gara JP, Potts JR, et al. 2010. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J. Bacteriol. 192: 5663-5673. https://doi.org/10.1128/JB.00628-10
  24. Weinstein L, Fields BN. 1982. Seminars in infectious disease, 2: 256-303. Ed. Stratton Intercontinental Medical Book Corporation.
  25. Nilsson I-M, Lee JC, Bremell T, Ryden C, Tarkowski A. 1997. The role of staphylococcal polysaccharide microcapsule expression in septicemia and septic arthritis. Infect. Immun. 65: 4216-4221. https://doi.org/10.1128/iai.65.10.4216-4221.1997
  26. Nanra JS, Buitrago SM, Crawford S, Ng J, Fink PS, Hawkins J, et al. 2013. Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum. Vaccin. Immunother. 9: 480-487. https://doi.org/10.4161/hv.23223
  27. O'Riordan K, Lee JC. 2004. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17: 218-234. https://doi.org/10.1128/CMR.17.1.218-234.2004
  28. Sau S, Bhasin N, Wann ER, Lee JC, Foster TJ, Lee CY. 1997. The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143: 2395-2405. https://doi.org/10.1099/00221287-143-7-2395
  29. Parsek MR, Singh PK. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Ann. Rev. Microbiol. 57: 677-701. https://doi.org/10.1146/annurev.micro.57.030502.090720
  30. Kiedrowski MR, Horswill AR. 2011. New approaches for treating staphylococcal biofilm infections. Annal. NY Acad. Sci. 1241: 104-121. https://doi.org/10.1111/j.1749-6632.2011.06281.x
  31. Fitzpatrick F, Humphreys H, O'Gara JP. 2005. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J. Clin. Microbiol. 43: 1973-1976. https://doi.org/10.1128/JCM.43.4.1973-1976.2005
  32. Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15: 167-193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  33. Scherr TD, Heim CE, Morrison JM, Kielian T. 2014. Hiding in plain sight: interplay between staphylococcal biofilms and host immunity. Front. Immunol. 5: 37. https://doi.org/10.3389/fimmu.2014.00037
  34. De la Fuente-Nunez C, Reffuveille F, Fernandez L, Hancock RE. 2013. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 16: 580-589. https://doi.org/10.1016/j.mib.2013.06.013
  35. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial bio-films: a common cause of persistent infections. Science 284: 1318-1322. https://doi.org/10.1126/science.284.5418.1318
  36. Yarets Y, Rubanov L, Novikova I, Shevchenko N. 2013. The biofilm-forming capacity of Staphylococcus aureus from chronic wounds can be useful for determining Wound-Bed Preparation methods. EWMA J. 13: 7-14.
  37. Otto M. 2008. Staphylococcal biofilms. Curr. Topics Microbiol. Immunol. 322: 207-228.
  38. Mirani ZA, Aziz M, Khan MN, Lal I, ul Hassan N, Khan SI. 2013. Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin. Microb. Pathog. 61: 66-72. https://doi.org/10.1016/j.micpath.2013.05.002
  39. Rooijakkers SH, van Kessel KP, van Strijp JA. 2005. Staphylococcal innate immune evasion. Trends Microbiol. 13: 596-601. https://doi.org/10.1016/j.tim.2005.10.002
  40. Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA. 2005. Anti-opsonic properties of staphylokinase. Microb. Infect. 7: 476-484. https://doi.org/10.1016/j.micinf.2004.12.014
  41. Lee LYL, Hook M, Haviland D, Wetsel RA, Yonter EO, Syribeys P, et al. 2004. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J. Infect. Dis. 190: 571-579. https://doi.org/10.1086/422259
  42. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, et al. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199: 687-695. https://doi.org/10.1084/jem.20031636
  43. Rooijakkers SH, Ruyken M, Van Roon J, Van Kessel KP, Van Strijp JA, Van Wamel WJ. 2006. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell. Microbiol. 8: 1282-1293. https://doi.org/10.1111/j.1462-5822.2006.00709.x
  44. Sonnen AF, Henneke P. 2013. Role of pore-forming toxins in neonatal sepsis. Clin. Dev. Immunol. 2013: 608456. https://doi.org/10.1155/2013/608456
  45. Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT, Connelly JE, et al. 2010. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 5: e11071. https://doi.org/10.1371/journal.pone.0011071
  46. Vandenesch F, Lina G, Henry T. 2012. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front. Cell. Infect. Microbiol. 2: 12.
  47. Lin Y-C, Peterson ML. 2010. New insights into the prevention of staphylococcal infections and toxic shock syndrome. Exp. Rev. Clin. Pharmacol. 3: 753-767. https://doi.org/10.1586/ecp.10.121
  48. Chowdhury T. 2014. Virtual screening of compounds derived from Garcinia pedunculata as an inhibitor of gamma hemolysin component A of Staphylo-coccus aureus. Bangladesh J. Pharmacol. 9: 67-71. https://doi.org/10.3329/bjp.v9i1.17368
  49. Voyich JM, Otto M, Mathema B, Braughton KR, Whitney AR, Welty D, et al. 2006. Is Panton-Valentine leukocidin the major virulence determinant in community-associated methicillin-resistant Staphylococcus aureus disease? J. Infect. Dis. 194: 1761-1770. https://doi.org/10.1086/509506
  50. Genestier A-L, Michallet M-C, Prevost G, Bellot G, Chalabreysse L, Peyrol S, et al. 2005. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J. Clin. Investig. 115: 3117-3127. https://doi.org/10.1172/JCI22684
  51. McKevitt AI, Bjornson GL, Mauracher CA, Scheifele DW. 1990. Amino acid sequence of a deltalike toxin from Staphylococcus epidermidis. Infect. Immun. 58: 1473-1475. https://doi.org/10.1128/iai.58.5.1473-1475.1990
  52. Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, et al. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med. 13: 1510-1514. https://doi.org/10.1038/nm1656
  53. Tsompanidou E, Denham EL, Becher D, de Jong A, Buist G, van Oosten M, et al. 2013. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl. Environ. Microbiol. 79: 886-895. https://doi.org/10.1128/AEM.03157-12
  54. Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. 2012. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8: e1002744. https://doi.org/10.1371/journal.ppat.1002744
  55. Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, et al. 2011. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 121: 238-248. https://doi.org/10.1172/JCI42520
  56. Bukowski M, Wladyka B, Dubin G. 2010. Exfoliative toxins of Staphylococcus aureus. Toxins 2: 1148-1165. https://doi.org/10.3390/toxins2051148
  57. Holten KB, Onusko EM. 2000. Appropriate prescribing of oral beta-lactam antibiotics. Am. Fam. Physician 62: 611-620.
  58. Lobanovska M, Pilla G. 2017. Focus: Drug development: Penicillin's discovery and antibiotic resistance: Lessons for the future? Yale J. Biol. Med. 90: 135.
  59. Hennekinne JA, De Buyser ML, Dragacci S. 2012. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol. Rev. 36: 815-836. https://doi.org/10.1111/j.1574-6976.2011.00311.x
  60. Lin C-F, Chen C-L, Huang W-C, Cheng Y-L, Hsieh C-Y, Wang C-Y, et al. 2010. Different types of cell death induced by enterotoxins. Toxins 2: 2158-2176. https://doi.org/10.3390/toxins2082158
  61. Balaban N, Rasooly A. 2000. Staphylococcal enterotoxins. Int. J. Food Microbiol. 61: 1-10. https://doi.org/10.1016/S0168-1605(00)00377-9
  62. Rosenbach AJF. 1884. Mikro-organismen bei den Wund-infections-krankheiten des Menschen, Ed. JF Bergmann.
  63. Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W, et al. 2004. Microarray-based analysis of the Staphylococcus aureus σB regulon. J. Bacteriol. 186: 4085-4099. https://doi.org/10.1128/JB.186.13.4085-4099.2004
  64. Ribeiro D, Freitas M, Silva AM, Carvalho F, Fernandes E. 2018. Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem. Toxicol. 120: 681-699. https://doi.org/10.1016/j.fct.2018.07.060
  65. Siems W, Wiswedel I, Salerno C, Crifo C, Augustin W, Schild L, et al. 2005. β-Carotene breakdown products may impair mitochondrial functions-potential side effects of high-dose β-carotene supplementation. J. Nutr. Biochem. 16: 385-397. https://doi.org/10.1016/j.jnutbio.2005.01.009
  66. Fernandes A, Nascimento TC, Jacob-Lopes E, De Rosso V, Zepka L. 2018. Introductory Chapter: Carotenoids - A brief overview on its structure, biosynthesis, synthesis, and applications, 1: 1-16, Ed.
  67. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202: 209-215. https://doi.org/10.1084/jem.20050846
  68. Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo JM, et al. 1994. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus. J. Bacteriol. 176: 7719-7726. https://doi.org/10.1128/jb.176.24.7719-7726.1994
  69. Clauditz A, Resch A, Wieland K-P, Peschel A, Gotz F. 2006. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect. Immun. 74: 4950-4953. https://doi.org/10.1128/IAI.00204-06
  70. Beard-Pegler MA, Stubbs E, Vickery AM. 1988. Observations on the resistance to drying of staphylococcal strains. J. Med. Microbiol. 26: 251-255. https://doi.org/10.1099/00222615-26-4-251
  71. Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2: 820-832. https://doi.org/10.1038/nrmicro1004
  72. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, et al. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J. Exp. Med. 202: 209-215. https://doi.org/10.1084/jem.20050846
  73. Liu C-I, Liu GY, Song Y, Yin F, Hensler ME, Jeng W-Y, et al. 2008. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319: 1391-1394. https://doi.org/10.1126/science.1153018
  74. Popov I, Kaprel'iants A, Ostrovskil D, Ignatov V. 1976. Study of the membranes of pigment-free mutant of Staphylococcus aureus. Biokhimiia (Moscow, Russia). 41: 1116-1120.
  75. Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, et al. 2011. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob. Agents Chemother. 55: 526-531. https://doi.org/10.1128/AAC.00680-10
  76. Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, et al. 2000. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect. Immun. 68: 3548-3553. https://doi.org/10.1128/IAI.68.6.3548-3553.2000
  77. Mitchell G, Fugere A, Gaudreau KP, Brouillette E, Frost EH, Cantin AM, et al. 2013. SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants. PLoS One 8: e65018. https://doi.org/10.1371/journal.pone.0065018
  78. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. 2012. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33: 5967-5982. https://doi.org/10.1016/j.biomaterials.2012.05.031
  79. Marshall JH, Wilmoth GJ. 1981. Proposed pathway of triterpenoid carotenoid biosynthesis in Staphylococcus aureus: evidence from a study of mutants. J. Bacteriol. 147: 914-919. https://doi.org/10.1128/jb.147.3.914-919.1981
  80. Palma M, Cheung AL. 2001. Sigma(B) activity in Staphylococcus aureus is controlled by RsbU and an additional factor(s) during bacterial growth. Infect. Immun. 69: 7858-7865. https://doi.org/10.1128/IAI.69.12.7858-7865.2001
  81. Kullik I, Giachino P, Fuchs T. 1998. Deletion of the alternative sigma factor is sigma B Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180: 4814-4820. https://doi.org/10.1128/jb.180.18.4814-4820.1998
  82. Giachino P, Engelmann S, Bischoff M. 2001. Sigma B activity depends on RsbU in Staphylococcus aureu. J. Bacteriol. 183: 1843-1852. https://doi.org/10.1128/JB.183.6.1843-1852.2001
  83. Liu Y, Wu N, Dong J, Gao Y, Zhang X, Shao N, et al. 2010. SsrA (tmRNA) acts as an antisense RNA to regulate Staphylococcus aureus pigment synthesis by base pairing with crtMN mRNA. FEBS Lett. 584: 4325-4329. https://doi.org/10.1016/j.febslet.2010.09.024
  84. Sen S, Sirobhushanam S, Johnson SR, Song Y, Tefft R, Gatto C, et al. 2016. Growth-environment dependent modulation of Staphylococcus aureus branched-chain to straight-chain fatty acid ratio and incorporation of unsaturated fatty acids. PLoS One 11: e0165300. https://doi.org/10.1371/journal.pone.0165300
  85. Kullik I, Giachino P, Fuchs T. 1998. Deletion of the alternative sigma factor σB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180: 4814-4820. https://doi.org/10.1128/jb.180.18.4814-4820.1998
  86. van Schaik W, Abee T. 2005. The role of σB in the stress response of Gram-positive bacteria - targets for food preservation and safety. Curr. Opin. Biotechnol. 16: 218-224. https://doi.org/10.1016/j.copbio.2005.01.008
  87. Katzif S, Lee E-H, Law AB, Tzeng Y-L, Shafer WM. 2005. CspA regulates pigment production in Staphylococcus aureus through a SigB-dependent mechanism. J. Bacteriol. 187: 8181-8184. https://doi.org/10.1128/JB.187.23.8181-8184.2005
  88. Hall JW, Yang J, Guo H, Ji Y. 2017. The Staphylococcus aureus AirSR two-component system mediates reactive oxygen species resistance via transcriptional regulation of staphyloxanthin production. Infect. Immun. 85: e00838-00816.
  89. Lan L, Cheng A, Dunman PM, Missiakas D, He C. 2010. Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus. J. Bacteriol. 192: 3068-3077. https://doi.org/10.1128/JB.00928-09
  90. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ, Bose JL, et al. 2013. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 4: e00537-00512.
  91. Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, et al. 2006. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J. Bacteriol. 188: 6739-6756. https://doi.org/10.1128/JB.00609-06
  92. Hu B, Mayer MP, Tomita M. 2006. Modeling Hsp70-mediated protein folding. Biophys. J. 91: 496-507. https://doi.org/10.1529/biophysj.106.083394
  93. Craig EA, Schlesinger MJ. 1985. The heat shock respons. Critc. Rev. Biochem. 18: 239-280. https://doi.org/10.3109/10409238509085135
  94. Al Refaii A, Alix JH. 2009. Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol. Microbiol. 71: 748-762. https://doi.org/10.1111/j.1365-2958.2008.06561.x
  95. Singh VK, Sirobhushanam S, Ring RP, Singh S, Gatto C, Wilkinson BJ. 2018. Roles of pyruvate dehydrogenase and branchedchain α-keto acid dehydrogenase in branched-chain membrane fatty acid levels and associated functions in Staphylococcus aureus. J. Med. Microbiol. 67: 570. https://doi.org/10.1099/jmm.0.000707
  96. Kakutani Y. 1967. Detection of some isoprenoids and the influence of diphenylamine on the biosynthesis of isoprenoid by Sporobolomyces shibatanus. J. Biochem. 61: 193-198. https://doi.org/10.1093/oxfordjournals.jbchem.a128531
  97. Hammond RK, White DC. 1970. Inhibition of vitamin K2 and carotenoid synthesis in Staphylococcus aureus by diphenylamine. J. Bacteriol. 103: 611-615. https://doi.org/10.1128/jb.103.3.611-615.1970
  98. No JH, de Macedo Dossin F, Zhang Y, Liu Y-L, Zhu W, Feng X, et al. 2012. Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium geranylgeranyl diphosphate synthase (GGPPS) and exhibit potent antimalarial activity. Proc. Natl. Acad. Sci. USA 109: 4058-4063. https://doi.org/10.1073/pnas.1118215109
  99. Song Y, Liu CI, Lin FY, No JH, Hensler M, Liu YL, et al. 2009. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J. Med. Chem. 52: 3869-3880. https://doi.org/10.1021/jm9001764
  100. Hammond RK, White DC. 1970. Inhibition of vitamin K2 and carotenoid synthesis in Staphylococcus aureus by diphenylamine. J. Bacteriol. 103: 611-615. https://doi.org/10.1128/jb.103.3.611-615.1970
  101. Chen F, Di H, Wang Y, Cao Q, Xu B, Zhang X, et al. 2016. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat. Chem. Biol. 12: 174-179. https://doi.org/10.1038/nchembio.2003
  102. Wang Y, Chen F, Di H, Xu Y, Xiao Q, Wang X, et al. 2016. Discovery of Potent benzofuran-derived diapophytoene desaturase (CrtN) inhibitors with enhanced oral bioavailability for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. J. Med. Chem. 59: 3215-3230. https://doi.org/10.1021/acs.jmedchem.5b01984
  103. Cushnie TP, Lamb AJ. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26: 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  104. Lee J-H, Park J-H, Cho MH, Lee J. 2012. Flavone reduces the production of virulence factors, staphyloxanthin and α-Hemolysin, in Staphylococcus aureus. Curr. Microbiol. 65: 726-732. https://doi.org/10.1007/s00284-012-0229-x
  105. Limsuwan S, Voravuthikunchai SP. 2008. Boesenbergia pandurata (Roxb.) Schltr., Eleutherine americana Merr. and Rhodomyrtus tomentosa (Aiton) Hassk. as antibiofilm producing and antiquorum sensing in Streptococcus pyogenes. FEMS Immunol. Med. Microbiol. 53: 429-436. https://doi.org/10.1111/j.1574-695X.2008.00445.x
  106. Saising J, Hiranrat A, Mahabusarakam W, Ongsakul M, Voravuthikunchai SP. 2008. Rhodomyrtone from Rhodomyrtus tomentosa (Aiton) Hassk. as a natural antibiotic for Staphylococcal Cutaneous infections. J. Health Sci. 54: 589-595. https://doi.org/10.1248/jhs.54.589
  107. Leejae S, Hasap L, Voravuthikunchai SP. 2013. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J. Med. Microbiol. 62: 421-428. https://doi.org/10.1099/jmm.0.047316-0
  108. Sakai K, Koyama N, Fukuda T, Mori Y, Onaka H, Tomoda H. 2012. Search method for inhibitors of Staphyloxanthin production by methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull. 35: 48-53. https://doi.org/10.1248/bpb.35.48
  109. Fukuda T, Tomoda H. 2013. Tylopilusin C, a new diphenolic compound from the fruiting bodies of Tylopilus eximinus. J. Antibiot. 66: 355-357. https://doi.org/10.1038/ja.2013.23
  110. Fukuda T, Shinkai M, Sasaki E, Nagai K, Kurihara Y, Kanamoto A, et al. 2015. Graphiumins, new thiodiketopiperazines from the marine-derived fungus Graphium sp. OPMF00224. J. Antibiot. 68: 620-627. https://doi.org/10.1038/ja.2015.41
  111. Fukuda T, Shimoyama K, Nagamitsu T, Tomoda H. 2014. Synthesis and biological activity of Citridone A and its derivatives. J. Antibiot. 67: 445-450. https://doi.org/10.1038/ja.2014.14