DOI QR코드

DOI QR Code

철계 비정질 분말을 활용한 초고속 용사 코팅층 개발

Development of Amorphous Iron Based Coating Layer using High-velocity Oxygen Fuel (HVOF) Spraying

  • 김정준 (국민대학교 신소재공학부) ;
  • 김송이 (한국생산기술연구원 산업소재공정연구부문) ;
  • 이종재 (한국코팅) ;
  • 이석재 (전북대학교 신소재공학부) ;
  • 임현규 (한국생산기술연구원 산업소재공정연구부문) ;
  • 이민하 (한국생산기술연구원 산업소재공정연구부문) ;
  • 김휘준 (한국생산기술연구원 스마트액상성형연구부문) ;
  • 최현주 (국민대학교 신소재공학부)
  • Kim, Jungjoon (School of Materials Science and Engineering, Kookmin University) ;
  • Kim, Song-Yi (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Jong-Jae (Division of Technical Research, Hankook Coating) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Lim, Hyunkyu (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Min-Ha (Industrial Materials Processing R&D Department, Korea Institute of Industrial Technology) ;
  • Kim, Hwi-Jun (Smart liquid processing R&D Department, Korea Institute of Industrial Technology) ;
  • Choi, Hyunjoo (School of Materials Science and Engineering, Kookmin University)
  • 투고 : 2021.12.08
  • 심사 : 2021.12.23
  • 발행 : 2021.12.28

초록

A new Fe-Cr-Mo-B-C amorphous alloy is designed, which offers high mechanical strength, corrosion resistance as well as high glass-forming ability and its gas-atomized amorphous powder is deposited on an ASTM A213-T91 steel substrate using the high-velocity oxygen fuel (HVOF) process. The hybrid coating layer, consisting of nanocrystalline and amorphous phases, exhibits strong bonding features with the substrate, without revealing significant pore formation. By the coating process, it is possible to obtain a dense structure in which pores are hardly observed not only inside the coating layer but also at the interface between the coating layer and the substrate. The coating layer exhibits good adhesive strength as well as good wear resistance, making it suitable for coating layers for biomass applications.

키워드

과제정보

This research was financially supported from the Civil-Military Technology cooperation program (No.18-CM-MA-15) and by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D program (P0006837).

참고문헌

  1. B. Q. Wang: Wear, 188 (1995) 40. https://doi.org/10.1016/0043-1648(95)06598-9
  2. S. Paul and M. Harvey: J. Therm. Spray Technol., 22 (2013) 316. https://doi.org/10.1007/s11666-012-9820-8
  3. T. Hussain, T. Dudziak, N. Simms and J. Nicholls: J. Therm. Spray Technol., 22 (2013) 797. https://doi.org/10.1007/s11666-013-9887-x
  4. A. Syed, N. Simms and J. Oakey: Fuel, 101 (2012) 62. https://doi.org/10.1016/j.fuel.2011.03.010
  5. A. U. Syed, T. Hussain, N. J. Simms and J. E. Oakey: Mater. High Temp., 29 (2012) 219. https://doi.org/10.3184/096034012X13323635669332
  6. G. Heath, P. Heimgartner, G. Irons, R. D. Miller and S. Gustafsson: Mater. Sci. Forum. Trans. Tech. Publ., (1997) 809.
  7. S. S. Chatha, H. S. Sidhu and B. S. Sidhu: J. Miner. Metall. Mater. Charact. Eng., 11 (2012) 569.
  8. D. Rezakhani: Anti-Corros. Methods Mater., 54 (2007) 237. https://doi.org/10.1108/00035590710762384
  9. M. Hadad, R. Hitzek, P. Buergler, L. Rohr and S. Siegmann: Wear, 263 (2007) 691. https://doi.org/10.1016/j.wear.2006.12.057
  10. C. Lima and J. Guilemany: Surf. Coat. Technol., 201 (2007) 4694. https://doi.org/10.1016/j.surfcoat.2006.10.005
  11. C. Lyphout, P. Nylen and L. G. Ostergren: J. Therm. Spray Technol., 21 (2012) 86. https://doi.org/10.1007/s11666-011-9689-y
  12. S.-Y. Chen, G.-Z. Ma, H.-D. Wang, P.-F. He, H.-M. Wang and M. Liu: Surf. Coat. Technol., 344 (2018) 43. https://doi.org/10.1016/j.surfcoat.2018.02.073
  13. A. Rzeznikiewicz and P. Cetnarowski: Weld. Technol. Rev., 90 (2018).
  14. S. Deshpande, A. Kulkarni, S. Sampath and H. Herman: Surf. Coat. Technol., 187 (2004) 6. https://doi.org/10.1016/j.surfcoat.2004.01.032
  15. J. Nicholls, M. Deakin and D. Rickerby: Wear, 233 (1999) 352. https://doi.org/10.1016/S0043-1648(99)00214-8
  16. C.-J. Li, G.-J. Yang and C.-X. Li: J. Therm. Spray Technol., 22 (2013) 192. https://doi.org/10.1007/s11666-012-9864-9
  17. A. Dent, A. Horlock, D. McCartney and S. Harris: J. Therm. Spray Technol., 8 (1999) 399. https://doi.org/10.1361/105996399770350340
  18. W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, J. Guo and Y. Qin: J. Therm. Spray Technol., 23 (2014) 1157. https://doi.org/10.1007/s11666-014-0096-z
  19. B. Movahedi, M. Enayati and C. Wong: J. Therm. Spray Technol., 19 (2010) 1093. https://doi.org/10.1007/s11666-010-9507-y
  20. J. Cheng, Z. Wang and B. Xu: J. Therm. Spray Technol., 21 (2012) 1025. https://doi.org/10.1007/s11666-012-9779-5
  21. S. Yoon, J. Kim, S. Kim and C. Lee: J. Weld. Join., 25 (2007) 42.
  22. A. Inoue and A. Takeuchi: Int. J. Appl. Glass Sci., 1 (2010) 273. https://doi.org/10.1111/j.2041-1294.2010.00019.x
  23. K. Kishitake, H. Era and F. Otsubo: J. Therm. Spray Technol., 5 (1996) 476. https://doi.org/10.1007/BF02645279
  24. H. J. Kim: J. Korean Magn. Soc., 21 (2011) 77. https://doi.org/10.4283/JKMS.2011.21.2.077
  25. C. Chang, Y. Dong, M. Liu, H. Guo, Q. Xiao and Y. Zhang: J. Alloy. Compd., 766 (2018) 959. https://doi.org/10.1016/j.jallcom.2018.07.055
  26. L. Xiaolong, D. Yaqiang, L. Min, C. Chuntao and W. Xin-Min: J. Alloy. Compd., 696 (2017) 1323. https://doi.org/10.1016/j.jallcom.2016.11.241
  27. Y. Sun, W. Wang, H. Li, L. Xie, Y. Li, S. Wang, W. Wang, J. Zhang and J. Zhang: Materials, 14 (2021) 4786. https://doi.org/10.3390/ma14174786
  28. Y. Sun, R. Yang, L. Xie, W. Wang, Y. Li, S. Wang, H. Li, J. Zhang and J. Zhang: Surf. Coat. Technol., 426 (2021) 127801. https://doi.org/10.1016/j.surfcoat.2021.127801
  29. G. Koga, R. Schulz, S. Savoie, A. Nascimento, Y. Drolet, C. Bolfarini, C. Kiminami and W. Botta: Surf. Coat. Technol., 309 (2017) 938. https://doi.org/10.1016/j.surfcoat.2016.10.057
  30. T. Wolfe, G. Fisher, N. Melendez and A. McDonald: International Thermal Spray Conf. Houston, USA, ASM International, USA, (2012) #30343.