References
- B. K. Seo, J. H. Kim, H. S. Ahn, B. J. Chang, and K. H. Lee, "The state of the art of membrane technology for separation of carbon dioxide from flue gas", KIC News, 14(3), 1 (2011).
- D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, and B. D. Freeman, "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer, 54, 18, 4729 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
- J. Gao, H. Mao, H. Jin, C. Chen, A. Feldhoff and Y. Li, "Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation", Micropor. Mesopor. Mater., 297, 110030 (2020). https://doi.org/10.1016/j.micromeso.2020.110030
- Y. Wu, D. Zhao, S. Chen, J. Ren, K. Hua, H. Li and M. Deng, "The effect of structure change from polymeric membrane to gel membrane on CO2 separation performance", Sep. Purif. Technol., 261, 118243 (2021). https://doi.org/10.1016/j.seppur.2020.118243
- V. Nafisi and M. Hagg, "Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture", J. Membr. Sci., 459, 244 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
- L. Dong, M. Chen, J. Li, D. Shi, W. Dong, X. Li and Y. Bai, "Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes", J. Membr. Sci., 520, 801 (2016). https://doi.org/10.1016/j.memsci.2016.08.043
- M. Vinoba, M. Bhagiyalakshmi, Y. Alqaheem, A. A. Alomair, A. Perez and M. S. Rana, "Recent progress of fillers in mixed matrix membranes for CO2 separation: A review", Sep. Purif. Technol, 188, 431 (2017). https://doi.org/10.1016/j.seppur.2017.07.051
- G. T. Offord, S. R. Armstrong, B. D. Freeman, E. Baer, A. Hiltner and D. R. Paul, "Gas transport in coextruded multilayered membranes with alternating dense and porous polymeric layers", Polymer, 55, 5, 1259 (2014). https://doi.org/10.1016/j.polymer.2014.01.030
- J. Sanchez-Lainez, M. Ballester-Catalan, E. Javierre-Ortin, C. Tellez and J. Coronas, "Pebax® 1041 supported membranes with carbon nanotubes prepared via phase inversion for CO2/N2 separation", Dalton Trans., 49, 9, 2905 (2020). https://doi.org/10.1039/c9dt04424h
- R. Ebadi, H. Maghsoudi and A. A. Babaluo, "Fabrication and characterization of Pebax-1657 mixed matrix membrane loaded with Si-CHA zeolite for CO2 separation from CH4", J. Nat. Gas Sci. Eng., 90, 103947 (2021). https://doi.org/10.1016/j.jngse.2021.103947
- M. D. Pravin and A. Gnanamani, "Preparation, characterization and reusability efficacy of aminefunctionalized graphene oxide-polyphenol oxidase complex for removal of phenol from aqueous phase", RSC Adv., 8, 67, 38416 (2018). https://doi.org/10.1039/c8ra06364h
- J. P. Kim, E. Choi, J. Kang, S. E. Choi, Y. Choi, O. Kwon, and D. W. Kim, "Ultrafast H2-selective nanoporous multilayer graphene membrane prepared by confined thermal annealing", Chem. Commun., 57, 8730 (2021). https://doi.org/10.1039/D1CC02946K
- Y. Choi, S. S. Kim, J. H. Kim, J. Kang, E. Choi, S. E. Choi, J. P. Kim, O. Kwon, and D. W. Kim, "Graphene oxide nanoribbon hydrogel: Viscoelastic behavior and use as a molecular separation membrane", ACS Nano, 14, 12195 (2020). https://doi.org/10.1021/acsnano.0c05902
- X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo and H. Wu, "Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes", ACS Appl. Mater. Interfaces, 7, 9, 5528 (2015). https://doi.org/10.1021/acsami.5b00106
- F. Pazani and A. Aroujalian, "Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers", Polym. Test., 81, 106264 (2020). https://doi.org/10.1016/j.polymertesting.2019.106264
- T. Hou, L. Shu, K. Guo, X. Zhang, S. Zhou, M. He and J. Yao, "Cellulose membranes with polyethylenimine-modified graphene oxide and zinc ions for promoted gas separation", Cellulose, 27, 6, 3277 (2020). https://doi.org/10.1007/s10570-019-02962-4
- S. Meshkat, S. Kaliaguine and D. Rodrigue, "Mixed matrix membranes based on amine and non-amine MIL-53 (Al) in Pebax® MH-1657 for CO2 separation", Sep. Purif. Technol., 200, 177 (2018). https://doi.org/10.1016/j.seppur.2018.02.038
- A. Huang and B. Feng, "Facile synthesis of PEI-GO@ ZIF-8 hybrid material for CO2 capture", Int. J. Hydrogen Energy, 43, 4, 2224 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.070
- H. Tai, Y. Zhen, C. Liu, Z. Ye, G. Xie, X. Du and Y. Jiang, "Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film", Sens. Actuators B: Chem., 230, 501 (2016). https://doi.org/10.1016/j.snb.2016.01.105
- X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, "Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture", Energy Fuels, 16, 6, 1463 (2002). https://doi.org/10.1021/ef020058u
- L. Keller, B. Ohs, J. Lenhart, L. Abduly, P. Blanke and M. Wessling, "High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture", Carbon, 126, 338 (2018). https://doi.org/10.1016/j.carbon.2017.10.023
- Q. Xin, H. Wu, Z. Jiang, Y. Li, S. Wang, Q. Li, X. Li, X. Lu, X. Cao and J. Yang, "SPEEK/aminefunctionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation", J. Membr. Sci., 467, 23 (2014). https://doi.org/10.1016/j.memsci.2014.04.048
- G. J. Shin, K. Y. Rhee, and S. J. Park, "Improvement of CO2 capture by graphite oxide in presence of polyethylenimine", Int. J. Hydrogen Energy, 41, 32, 14351 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.162
- D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS nano, 4, 4806 (2010). https://doi.org/10.1021/nn1006368
- Y. He, Y. Xia, J. Zhao, Y. Song, L. Yi, and L. Zhao, "One-step fabrication of PEI-modified GO particles for CO2 capture", Appl. Phys. A, 125, 160 (2019). https://doi.org/10.1007/s00339-019-2435-x
- K. Zarshenas, A. Raisi, and A. Aroujalian, "Mixed matrix membranes of nano-zeolite NaX/poly(ether-block-amide) for gas separation applications", J. Membr. Sci., 510, 270 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
- J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos, and G. N. Karanikolos, "CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions", Micropor. Mesopor. Mater., 267, 53 (2018). https://doi.org/10.1016/j.micromeso.2018.03.012
- E. A. Feijani, A. Tavassoli, H. Mahdavi, and H. Molavi, "Effective gas separation through graphene oxide containing mixed matrix membranes", J. Appl. Polym. Sci., 46271 (2018). https://doi.org/10.1002/app.46271
- D. Zhao, J. Ren, Y. Qiu, H. Li, K. Hua, X. Li, and M. Deng, "Effect of graphene oxide on the behavior or poly(amide-6-b-ethylene oxide)/graphene oxide mixed-matrix membrane in the permeation process", J. Appl. Polym. Sci., 132, 42624 (2015).
- R. Casadei, M. G. Baschetti, M. J. Yoo, H. B. Park, and L. Giorgini, "Pebax 2533/graphene oxide nanocomposite membranes for carbon capture", Membranes, 10, 188 (2020). https://doi.org/10.3390/membranes10080188
- A. Ehsani, M. Pakizeh, "Synthesis, characterization and gas permeation study of ZIF-11/Pebax2533 mixed matrix membrans", J. Taiwan Inst. Chem. Eng., 66, 414 (2016). https://doi.org/10.1016/j.jtice.2016.07.005
- J. Shen, "Size effects of graphene oxide on mixed matrix membranes for CO2 separation", AIChE J., 62, 2843 (2016). https://doi.org/10.1002/aic.15260
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- D. Huang, Q. Xin, Y. Ni, Y. Shuai, S. Wang, Y. Li, H. Ye, L. Lin, X. Ding, and Y. Zhang, "Synergistic effects of zeolite imidazole framework@graphene oxide composite in humidified mixed matrix membranes on CO2 separation", RSC Adv., 8, 6099 (2018). https://doi.org/10.1039/C7RA09794H