DOI QR코드

DOI QR Code

Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula

한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성

  • Woo, Hye-Jin (Department of Earth Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education, Seoul National University) ;
  • Lee, Joon-Soo (Climate Change Research Division, National Institute of Fisheries Science)
  • 우혜진 (서울대학교 지구과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과) ;
  • 이준수 (국립수산과학원 기후변화연구과)
  • Received : 2021.12.22
  • Accepted : 2021.12.29
  • Published : 2021.12.31

Abstract

Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.

위성 해수면온도 합성장은 수치예보모델의 입력 자료 및 지구온난화와 기후 변화 연구에 활용되는 중요한 자료이다. 본 연구에서는 2007년부터 2018년까지 6종류의 위성 해수면온도 합성장 자료를 수집하여 한반도 주변 해역에서 각 해수면온도 합성장 자료의 공간 분포 특성을 분석하였다. 기상청 해양기상부이 실측 수온 자료와 해수면온도 합성장 자료의 시계열을 비교하고 오차의 최대값 및 최대값이 나타나는 시기를 분석하였다. 황해 연안에 위치한 덕적도와 칠발도 부이에서 위성 해수면온도 합성장과 실측 수온의 차는 1년주기 또는 반년주기의 높은 변동성을 보였다. 포항 부이에서는 강한 용승에 의해 냉수대가 발생한 2013년 여름철에 높은 수온 차가 나타났다. 해수면온도 자료의 시계열을 활용하여 스펙트럼 분석을 수행한 결과, 일별 위성 해수면온도 합성장은 약 1개월 이상의 주기에서는 실측 자료와 유사한 스펙트럼 에너지를 보였다. 반면 위성 해수면온도 합성장과 실측 수온의 스펙트럼 에너지의 차는 시간 주파수가 증가할수록 증가하는 경향을 보였다. 이는 위성 해수면온도 합성장 자료가 연안 부근 수온의 시간적 변동성을 적절하게 표현하지 못하였을 가능성을 시사한다. 위성 해수면온도 영상의 해양 전선은 공간 구조와 강도의 측면에서 위성 해수면 온도 합성장 자료 간 차이점을 보였다. 해수면온도 합성장에서 표현되는 공간 규모 또한 공간 스펙트럼 분석을 통해 조사하였다. 그 결과 고해상도 해수면온도 합성 영상이 저해상도 해수면온도 영상보다 상대적으로 중규모 해양 현상의 공간 구조를 더 잘 표현하였다. 따라서 실제 중규모 해양 현상을 보다 구체적으로 표현할 수 있는 위성 해수면온도 합성장 생산을 위한 고도의 기술 개발이 필요하다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단 해양-육상-대기 탄소순환시스템 연구사업의 지원을 받아 수행된 연구임(NRF-2021M3I6A1089661).

References

  1. Banzon, V., Smith, T.M., Chin, T.M., Liu, C., and Hankins, W., 2016, A long-term record of blended satellite and in situ sea surface temperature for climate monitoring, modeling and environmental studies. Earth System Science Data, 8, 165-176. https://doi.org/10.5194/essd-8-165-2016
  2. Belkin, I.M., 2009, Rapid warming of large marine ecosystems. Progress in Oceanography, 81, 207-213. https://doi.org/10.1016/j.pocean.2009.04.011
  3. Brasnett, B., 1997, A global analysis of sea surface temperature for numerical weather prediction. Journal of Atmospheric and Oceanic Technology, 14, 925-937. https://doi.org/10.1175/1520-0426(1997)014<0925:AGAOSS>2.0.CO;2
  4. Brasnett, B., 2008, The impact of satellite retrievals in a global sea-surface-temperature analysis. Quarterly Journal of the Royal Meteorological Society, 134, 1745-1760. https://doi.org/10.1002/qj.319
  5. Cantin, N.E., Cohen, A.L., Karnauskas, K.B., Tarrant, A.M., and McCorkle, D.C., 2010, Ocean warming slows coral growth in the central Red Sea. Science, 329, 322-325. https://doi.org/10.1126/science.1190182
  6. Casey, K.S., and Cornillon, P., 2001, Global and regional sea surface temperature trends. Journal of Climate, 14, 3801-3818. https://doi.org/10.1175/1520-0442(2001)014<3801:GARSST>2.0.CO;2
  7. Castro, S.L., Wick, G.A., and Steele, M., 2016, Validation of satellite sea surface temperature analyses in the Beaufort Sea using UpTempO buoys. Remote Sensing of Environment, 187, 458-475. https://doi.org/10.1016/j.rse.2016.10.035
  8. Chang, K.-I., Teague, W., Lyu, S., Perkins, H., Lee, D.-K., Watts, D., Kim, Y.-B., Mitchell, D., Lee, C., and Kim, K., 2004, Circulation and currents in the southwestern East/Japan Sea: Overview and review. Progress in Oceanography, 61, 105-156. https://doi.org/10.1016/j.pocean.2004.06.005
  9. Chassignet, E.P., Hurlburt, H.E., Metzger, E.J., Smedstad, O.M., Cummings, J., Halliwell, G.R., Bleck, R., Baraille, R., Wallcraft, A.J., Lozano, C., et al., 2009, GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM). Oceanography, 22, 64-75. https://doi.org/10.5670/oceanog.2009.39
  10. Chin, T.M., Vazquez-Cuervo, J., and Armstrong, E.M., 2017, A multi-scale high-resolution analysis of global sea surface temperature. Remote Sensing of Environment, 200, 154-169. https://doi.org/10.1016/j.rse.2017.07.029
  11. Choi, B.H., Kim, K.O. and Eum. H.M., 2002, Digital bathymetric and topographic data for neighboring seas of Korea (in Korean with English abstract). Journal of Korean Society of Coastal and Ocean Engineers, 14, 41-50.
  12. Choi, Y.K., 2015, Upwelling in the southwest region of the East Sea in July, 2013. Journal of Korean Society of Fisheries and Ocean Technology, 51(2), 212-220. https://doi.org/10.3796/KSFT.2015.51.2.212
  13. Dash, P., Ignatov, A., Martin, M., Donlon, C., Brasnett, B., Reynolds, R.W., Banzon, V., Beggs, H., Cayula, J.F., Chao, Y., et al., 2012, Group for high resolution sea surface temperature (GHRSST) analysis fields intercomparisons. Part 2: Near real time web-based Level 4 SST quality monitor (L4-SQUAM). Deep-Sea Research Part II: Topical Studies in Oceanography, 77, 31-43.
  14. Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W., 2012, The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of Environment, 116, 140-158. https://doi.org/10.1016/j.rse.2010.10.017
  15. Fiedler, E.K., McLaren, A., Banzon, V., Brasnett, B., Ishizaki, S., Kennedy, J., Rayner, N., Roberts-Jones, J., Corlett, G., Merchant, C.J., et al., 2019, Intercomparison of long-term sea surface temperature analyses using the GHRSST Multi-Product Ensemble (GMPE) system. Remote Sensing of Environment, 222, 18-33. https://doi.org/10.1016/j.rse.2018.12.015
  16. Gittings, J.A., Raitsos, D.E., Krokos, G., and Hoteit, I., 2018, Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem. Scientific Reports, 8, 2240. https://doi.org/10.1038/s41598-018-20560-5
  17. Gledhill, D.K., Wanninkhof, R., Millero, F.J., and Eakin, M., 2008, Ocean acidification of the Greater Caribbean Region 1996-2006. Journal of Geophysical Research, 113, C10031. https://doi.org/10.1029/2007jc004629
  18. Ha, K.J., Heo, K.Y., Lee, S.S., Yun, K.S., and Jhun, J.G., 2012, Variability in the East Asian Monsoon: A review. Meteorological Applications, 19, 200-215. https://doi.org/10.1002/met.1320
  19. Huh, O.K., 1982, Spring season flow of the Tsushima Current and its separation from the Kuroshio: Satellite evidence. Journal of Geophysical Research, 87, 9687-9693. https://doi.org/10.1029/JC087iC12p09687
  20. Iwasaki, S., Kubota, M., and Tomita, H., 2008, Intercomparison and evaluation of global sea surface temperature products. International Journal of Remote Sensing, 9, 6263-6280. https://doi.org/10.1080/01431160802175363
  21. Kwon, M., Jhun, J.G., Wang, B., An, S.I., and Kug, J.S., 2005, Decadal change in relationship between east Asian and WNP summer monsoons. Geophysical Research Letters, 32, L16709. https://doi.org/10.1029/2005GL023026
  22. Lee, S.H., and Beardsley, R.C., 1999, Influence of stratification on residual tidal currents in the Yellow Sea. Journal of Geophysical Research, 104, 15679-15701. https://doi.org/10.1029/1999JC900108
  23. Lie, H.J., 1989, Tidal fronts in the southeastern Hwanghae (Yellow Sea). Continental Shelf Research, 9, 527-546. https://doi.org/10.1016/0278-4343(89)90019-8
  24. Martin, M.J., Hines, A., and Bell, M.J., 2007, Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Quarterly Journal of the Royal Meteorological Society, 133, 981-995. https://doi.org/10.1002/qj.74
  25. Martin, M., Dash, P., Ignatov, A., Banzon, V., Beggs, H., Brasnett, B., Cayula, J.F., Cummings, J., Donlon, C., Gentemann, C., et al., 2012, Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE). Deep-Sea Research Part II: Topical Studies in Oceanography, 77, 21-30.
  26. McPhaden, M.J., 2012, A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophysical Research Letters, 39, L09706. https://doi.org/10.1029/2012GL051826
  27. Merchant, C.J., Embury, O., Roberts-Jones, J., Fiedler, E., Bulgin, C.E., Corlett, G.K., Good, S., McLaren, A., Rayner, N., Morak-Bozzo, S., et al., 2014, Sea surface temperature datasets for climate applications from Phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geoscience Data Journal, 1, 179-191. https://doi.org/10.1002/gdj3.20
  28. Okuro, A., Kubota, M., Tomita, H., and Hihara, T., 2014, Inter-comparison of various global sea surface temperature products. International Journal of Remote Sensing, 35, 5394-5410. https://doi.org/10.1080/01431161.2014.926415
  29. Park, K.-A., Ullman, D.S., Kim, K., Chung, J.Y., and Kim, K.-R., 2007, Spatial and temporal variability of satelliteobserved Subpolar Front in the East/Japan Sea. Deep-Sea Research Part I, 54, 453-470. https://doi.org/10.1016/j.dsr.2006.12.010
  30. Park, K.-A., Woo, H.-J., and Ryu, J.-H., 2012, Spatial scales of mesoscale eddies from GOCI Chlorophyll-a concentration images in the East/Japan Sea. Ocean Science Journal, 47, 347-358. https://doi.org/10.1007/s12601-012-0033-3
  31. Park, K.-A., Park, J.-E., Choi, B.-J., Byun, D.-S., and Lee, E.-I., 2013, An oceanic current map in the East Sea for science textbooks based on scientific knowledge acquired from oceanic measurements (in Korean with English abstract). Journal of the Korean Society of Oceanography, 18, 234-265.
  32. Park, K.-A., Lee, E.-Y., Chang, E., and Hong, S., 2015, Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. Journal of Marine Systems, 143, 24-38. https://doi.org/10.1016/j.jmarsys.2014.10.013
  33. Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C., and Kaplan, A., 2003, Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108, 4407. https://doi.org/10.1029/2002jd002670
  34. Reynolds, R.W., and Chelton, D.B., 2010, Comparisons of daily sea surface temperature analyses for 2007-08. Journal of Climate, 23, 3545-3562. https://doi.org/10.1175/2010JCLI3294.1
  35. Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S., and Schlax, M.G., 2007, Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20, 5473-5496. https://doi.org/10.1175/2007JCLI1824.1
  36. Sakurai, T., Kurihara, Y., and Kuragano, T., 2005, Merged satellite and in-situ data global daily SST. In Proc. 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
  37. Wentz, F.J., and Schabel, M., 2000, Precise climate monitoring using complementary satellite data sets. Nature, 403, 414-416. https://doi.org/10.1038/35000184
  38. Woo, H.J., and Park, K.A., 2020, Inter-Comparisons of Daily Sea Surface Temperatures and In-Situ Temperatures in the Coastal Regions. Remote Sensing, 12, 1592. https://doi.org/10.3390/rs12101592