SPECT/CT의 획득시간 증감에 따른 방사능농도 추정치의 변화

Variation on Estimated Values of Radioactivity Concentration According to the Change of the Acquisition Time of SPECT/CT

  • 김지현 (서울특별시 서울의료원 핵의학과) ;
  • 이주영 (송호대학교 방사선과) ;
  • 손현수 (서울특별시 서울의료원 핵의학과) ;
  • 박훈희 (신구대학교 방사선과)
  • Kim, Ji-Hyeon (Department of Nuclear Medicine, Seoul Medical Center) ;
  • Lee, Jooyoung (Department of Radiological Technology, Songho College) ;
  • Son, Hyeon-Soo (Department of Nuclear Medicine, Seoul Medical Center) ;
  • Park, Hoon-Hee (Department of Radiological Technology, Shingu College)
  • 투고 : 2021.10.01
  • 심사 : 2021.10.29
  • 발행 : 2021.11.13

초록

SPECT/CT는 보급 초기에 뛰어난 보정방법과 융합영상을 기반으로 한 정성적 기능이 주목받았고, 최근 동반진단치료(Theranostics)등의 도입으로 그 정량적 기능에 대한 관심과 활용이 증가되는 추세이다. PET/CT와 달리 SPECT/CT의 절대 정량화는 조준기의 종류, 검출기 회전과 같은 조건들이 영상획득과 재구성 방법 등에 까다로운 요소로 작용하고 있다. 따라서 본 연구에서는 SPECT/CT 촬영조건 중 투영상수와 투영상당 획득시간에 따른 총 획득시간(검사시간)의 증·감이 방사능농도 추정치에 미치는 영향을 알아보고자 한다. 부피 9,293 ml의 원통형 팬텀에 멸균수를 가득 채운 후 99mTcO4- 91.76 MBq를 희석하여 총 획득시간 600 sec(10 sec/frame × 120 frames, matrix size 128 × 128)의 조건으로 기준영상을 촬영하였고, 체적감도와 교정인자를 확인하였다. 기준영상을 중심으로 총 획득시간을 60(-90%), 150(-75%), 300(-50%), 450(-25%), 900(+50%), 1200(+100%) sec/frame으로 증·감시켜 비교영상을 획득하였고, 각 영상별 세부조건은 투영상당 획득시간(sec/frame)을 1.0, 2.5, 5.0, 7.5, 15.0, 20.0 sec/frame(투영상수 120frames 고정)로, 투영상수를 12, 30, 60, 90, 180, 240 frames(투영상당 획득시간 10 sec/frame 고정)로 설정하였다. 획득된 각 영상에서 관심체적을 통하여 측정한 계수를 바탕으로 정성적 평가로서 CNR(Contrast to Noise Ratio)의 변동률(%)을 확인하였고, 방사능농도 추정치의 변동률(%)을 통해서는 정량적 평가를 시행하였다. 이때 방사능농도 추정치(cps/ml)와 실제 방사능농도(Bq/ml)의 관계는 회복계수(RC_Recovery Coefficients)를 지표로 비교·분석하였다. 투영상수 변화에 따른 결과[CNR 변동률(%), 방사능농도 추정치 변동률(%), RC]는 총 획득시간 증감률(%) -90%에서 [-89.5%, +3.90%, 1.04], -75%에서 [-77.9%, +2.71%, 1.03], -50%에서 [-55.6%, +1.85%, 1.02], -25%에서 [-33.6%, +1.37%, 1.01], +50%에서 [+33.7%, +0.71%, 1.01], +100%에서 [+93.2%, +0.32%, 1.00]이었으며, 투영상당 획득시간 변화에 따른 결과는 총 획득시간 증감률(%)-90%에서 [-89.3%, -3.55%, 0.96], -75%에서 [-73.4%, -0.17%, 1.00], -50%에서 [-49.6%, -0.34%, 1.00], -25%에서 [-24.9%, 0.03%, 1.00], +50%에서 [+49.3%, -0.04%, 1.00], +100%에서 [+99.0%, +0.11%, 1.00]이었다. SPECT/CT에서 총 획득시간의 증·감에 따라 획득된 총 계수와 그에 따른 영상품질(CNR)은 비례하여 변화하는 양상을 보였지만, 절대 정량화를 통한 정량적 평가에서는 모든 실험조건에서 5% 미만(-3.55에서 +3.90%)의 변화를 보여 큰 영향을 받지 않고 정량적 정확성(RC 0.96에서 1.04)을 유지하였다. 검사시간의 증가보다는 단축을 우선하여 고려하였을 때 총 획득시간 감소는 정성적 기능에 있어서 기존에도 배제할 수 없었던 사항이지만 정량적 기능은 큰 손실 없이 적용 가능하여 임상적으로 실효성이 있다고 판단된다. 다만 총 획득시간의 증·감 시 동일한 검사시간이라면 투영상수의 변경보다는 투영상당 획득시간의 변경이 정성적, 정량적으로 조건변화에 따른 변동 폭이 적은 것으로 나타났다.

Purpose SPECT/CT was noted for its excellent correction method and qualitative functions based on fusion images in the early stages of dissemination, and interest in and utilization of quantitative functions has been increasing with the recent introduction of companion diagnostic therapy(Theranostics). Unlike PET/CT, various conditions like the type of collimator and detector rotation are a challenging factor for image acquisition and reconstruction methods at absolute quantification of SPECT/CT. Therefore, in this study, We want to find out the effect on the radioactivity concentration estimate by the increase or decrease of the total acquisition time according to the number of projections and the acquisition time per projection among SPECT/CT imaging conditions. Materials and Methods After filling the 9,293 ml cylindrical phantom with sterile water and diluting 99mTc 91.76 MBq, the standard image was taken with a total acquisition time of 600 sec (10 sec/frame × 120 frames, matrix size 128 × 128) and also volume sensitivity and the calibration factor was verified. Based on the standard image, the comparative images were obtained by increasing or decreasing the total acquisition time. namely 60 (-90%), 150 (-75%), 300 (-50%), 450 (-25%), 900 (+50%), and 1200 (+100%) sec. For each image detail, the acquisition time(sec/frame) per projection was set to 1.0, 2.5, 5.0, 7.5, 15.0 and 20.0 sec (fixed number of projections: 120 frame) and the number of projection images was set to 12, 30, 60, 90, 180 and 240 frames(fixed time per projection:10 sec). Based on the coefficients measured through the volume of interest in each acquired image, the percentage of variation about the contrast to noise ratio (CNR) was determined as a qualitative assessment, and the quantitative assessment was conducted through the percentage of variation of the radioactivity concentration estimate. At this time, the relationship between the radioactivity concentration estimate (cps/ml) and the actual radioactivity concentration (Bq/ml) was compared and analyzed using the recovery coefficient (RC_Recovery Coefficients) as an indicator. Results The results [CNR, radioactivity Concentration, RC] by the change in the number of projections for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.5%, +3.90%, 1.04] at -90%, [-77.9%, +2.71%, 1.03] at -75%, [-55.6%, +1.85%, 1.02] at -50%, [-33.6%, +1.37%, 1.01] at -25%, [-33.7%, +0.71%, 1.01] at +50%, [+93.2%, +0.32%, 1.00] at +100%. and also The results [CNR, radioactivity Concentration, RC] by the acquisition time change for each increase or decrease rate (-90%, -75%, -50%, -25%, +50%, +100%) of total acquisition time are as follows. [-89.3%, -3.55%, 0.96] at - 90%, [-73.4%, -0.17%, 1.00] at -75%, [-49.6%, -0.34%, 1.00] at -50%, [-24.9%, 0.03%, 1.00] at -25%, [+49.3%, -0.04%, 1.00] at +50%, [+99.0%, +0.11%, 1.00] at +100%. Conclusion In SPECT/CT, the total coefficient obtained according to the increase or decrease of the total acquisition time and the resulting image quality (CNR) showed a pattern that changed proportionally. On the other hand, quantitative evaluations through absolute quantification showed a change of less than 5% (-3.55 to +3.90%) under all experimental conditions, maintaining quantitative accuracy (RC 0.96 to 1.04). Considering the reduction of the total acquisition time rather than the increasing of the image acquiring time, The reduction in total acquisition time is applicable to quantitative analysis without significant loss and is judged to be clinically effective. This study shows that when increasing or decreasing of total acquisition time, changes in acquisition time per projection have fewer fluctuations that occur in qualitative and quantitative condition changes than the change in the number of projections under the same scanning time conditions.

키워드

참고문헌

  1. ICRP, Radiological Protection in Therapy with Radio-pharmaceuticals. ICRP Publication 140. 2018 Nov
  2. Arda K, Joseph AO, Richard LW, Michael MG, van Abbeele AD. Theranostics: The Role of Quantitative Nuclear. Semin Radiat Oncol. 2021 Jan;31(1):28-36 https://doi.org/10.1016/j.semradonc.2020.07.003
  3. Bin H, Eric CF. Effects of shortened acquisition time on accuracy and precision of quantitative estimates of organ activity. Am Assoc Phys Med. 2010; 37(4):1807-1815
  4. NEMA. Performance Measurements of Gamma Cameras. NEMA Standards Publication NU 1-2012. 2013;44-47
  5. IAEA. Quantitative Nuclear Medicine Imaging: Concepts, Requirements and Methods. IAEA Human Health Reposrts No.9, 2014;9:36
  6. Nakamura Y, Tomiguchi S, Katsuda N. Usefulness of the collimator detector response(CDR) recovery and the scatter correction by the effective scatter source estimation(ESSE) method in myocardial SPECT study. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2010; 66(6):609-17. https://doi.org/10.6009/jjrt.66.609
  7. Johannes Z, Alexander HV, Amos Y, Joachim H, Torsten K. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010; 51:921-928 https://doi.org/10.2967/jnumed.109.071571
  8. 김진구, 함준철, 오신현, 강천구, 김재삼. Dose calibrator 측정 깊이와 용량의 변화에 따른 선량값의 성향에 대한 고찰. 핵의학기술. 2020;24(1):20-26
  9. Alfonso RM, Ole Marius HR, Jan DH, Svein-Erik M, Andreas A, Muyinatu A. LB, The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability, IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Apr;67(4):745-759 https://doi.org/10.1109/tuffc.2019.2956855
  10. Anil A, Jonathan R, Anthony S. P, Michael L. O. Improving Spatial Resolution Using Incoherent Subtraction of Receive Beams Having Different Apodizations. IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jan;66(1):5-17. https://doi.org/10.1109/tuffc.2018.2876285
  11. 이재영, 이을규, 김기원, 정회원, 유광열, 박훈희 외 2명. Breast PET CT 영상 재구성 변화에 따른 대조도 대 잡음비와 신호 대 잡음비의 비교평가. 방사선기술과학. 2017;40(1):79-85
  12. Marin I, Ryden T, Van Essen M, Svensson J, Gracheva N, Koster U, et al. Establishment of a clinical SPECT/CT protocol for imaging of 161Tb. EJNMMI Physics. 2020;7(45): 6-7 https://doi.org/10.1186/s40658-020-0274-7
  13. NIH Health & Human Services. Help Me Understand Genetics 'Precision Medicine'. U.S.National Library of Medicine 'MedlinePlus' Web site. Available at:https://medlineplus.gov/download/genetics/understanding/precisionmedicine.pdf.