Acknowledgement
This study was supported by Korea University (grant no. S29025026).
References
- Nejatidanesh F, Lotfi HR, Savabi O. Marginal accuracy of interim restorations fabricated from four interim autopolymerizing resins. J Prosthet Dent 2006;95:364-7. https://doi.org/10.1016/j.prosdent.2006.02.030
- Mai HN, Lee KB, Lee DH. Fit of interim crowns fabricated using photopolymer-jetting 3D printing. J Prosthet Dent 2017;118:208-15. https://doi.org/10.1016/j.prosdent.2016.10.030
- Peng CC, Chung KH, Yau HT. Assessment of the internal fit and marginal integrity of interim crowns made by different manufacturing methods. J Prosthet Dent 2020;123:514-22. https://doi.org/10.1016/j.prosdent.2019.02.024
- Balkenhol M, Knapp M, Ferger P, Heun U, Wostmann B. Correlation between polymerization shrinkage and marginal fit of temporary crowns. Dent Mater 2008;24: 1575-84. https://doi.org/10.1016/j.dental.2008.07.001
- Kang SY, Park JH, Kim JH, Kim WC. Accuracy of provisional crowns made using stereolithography apparatus and subtractive technique. J Adv Prosthodont 2018;10:354-60. https://doi.org/10.4047/jap.2018.10.5.354
- Yao J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent 2014;112:649-57. https://doi.org/10.1016/j.prosdent.2014.01.012
- Park JY, Jeong ID, Lee JJ, Bae SY, Kim JH, Kim WC. In vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods. J Prosthet Dent 2016;116:536-42. https://doi.org/10.1016/j.prosdent.2016.03.012
- Ng J, Ruse D, Wyatt C. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent 2014;112:555-60. https://doi.org/10.1016/j.prosdent.2013.12.002
- Revilla-Leon M, Ozcan M. Additive manufacturing technologies used for processing polymers: current status and potential application in prosthetic dentistry. J Prosthodont 2019;28:146-58. https://doi.org/10.1111/jopr.12801
- Alghazzawi TF. Advancements in CAD/CAM technology: options for practical implementation. J Prosthodont Res 2016;60:72-84. https://doi.org/10.1016/j.jpor.2016.01.003
- Kim DY, Jeon JH, Kim JH, Kim HY, Kim WC. Reproducibility of different arrangement of resin copings by dental microstereolithography: evaluating the marginal discrepancy of resin copings. J Prosthet Dent 2017;117:260-5. https://doi.org/10.1016/j.prosdent.2016.07.007
- Shamseddine L, Mortada R, Rifai K, Chidiac JJ. Fit of pressed crowns fabricated from two CAD-CAM wax pattern process plans: a comparative in vitro study. J Prosthet Dent 2017;118:49-54. https://doi.org/10.1016/j.prosdent.2016.10.003
- van Noort R. The future of dental devices is digital. Dent Mater 2012;28:3-12. https://doi.org/10.1016/j.dental.2011.10.014
- Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: a review. Dent Mater 2019;35:825-46. https://doi.org/10.1016/j.dental.2019.02.026
- Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016;32:54-64. https://doi.org/10.1016/j.dental.2015.09.018
- Osman RB, Alharbi N, Wismeijer D. Build Angle: Does it influence the accuracy of 3D-printed dental restorations using digital light-processing technology? Int J Prosthodont 2017;30:182-8. https://doi.org/10.11607/ijp.5117
- Alharbi N, Osman RB, Wismeijer D. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology. Int J Prosthodont 2016;29:503-10. https://doi.org/10.11607/ijp.4835
- Park GS, Kim SK, Heo SJ, Koak JY, Seo DG. Effects of printing parameters on the fit of implant-supported 3D printing resin prosthetics. Materials (Basel) 2019; 12:2533. https://doi.org/10.3390/ma12162533
- Karalekas D, Aggelopoulos A. Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin. J Mater Process Technol 2003;136:146-50. https://doi.org/10.1016/S0924-0136(03)00028-1
- Katheng A, Kanazawa M, Iwaki M, Minakuchi S. Evaluation of dimensional accuracy and degree of polymerization of stereolithography photopolymer resin under different postpolymerization conditions: an in vitro study. J Prosthet Dent 2020:S0022-3913(20)30160-8.
- Kim J, Lee DH. Influence of the postcuring process on dimensional accuracy and seating of 3D-printed polymeric fixed prostheses. Biomed Res Int 2020; 2020:2150182.
- Kalberer N, Mehl A, Schimmel M, Müller F, Srinivasan M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: an in vitro evaluation of trueness. J Prosthet Dent 2019;121:637-43. https://doi.org/10.1016/j.prosdent.2018.09.001
- Yoon HI, Hwang HJ, Ohkubo C, Han JS, Park EJ. Evaluation of the trueness and tissue surface adaptation of CAD-CAM mandibular denture bases manufactured using digital light processing. J Prosthet Dent 2018;120:919-26. https://doi.org/10.1016/j.prosdent.2018.01.027
- Jeon JH, Hwang SS, Kim JH, Kim WC. Trueness and precision of scanning abutment impressions and stone models according to dental CAD/CAM evaluation standards. J Adv Prosthodont 2018;10:335-9. https://doi.org/10.4047/jap.2018.10.5.335
- Kang SY, Park JH, Kim JH, Kim WC. Three-dimensional trueness analysis of ceramic crowns fabricated using a chairside computer-aided design/manufacturing system: an in vitro study. J Prosthodont Res 2020;64:152-8. https://doi.org/10.1016/j.jpor.2019.06.004
- Wang W, Yu H, Liu Y, Jiang X, Gao B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J Prosthet Dent 2019;121:285-91. https://doi.org/10.1016/j.prosdent.2018.04.012
- Bosch G, Ender A, Mehl A. A 3-dimensional accuracy analysis of chairside CAD/CAM milling processes. J Prosthet Dent 2014;112:1425-31. https://doi.org/10.1016/j.prosdent.2014.05.012
- Shah S, Sundaram G, Bartlett D, Sherriff M. The use of a 3D laser scanner using superimpositional software to assess the accuracy of impression techniques. J Dent 2004;32:653-8. https://doi.org/10.1016/j.jdent.2004.07.005
- ISO 12836. Dentistry digitizing devices for CAD/CAM systems for indirect dental restorations - test methods for assessing accuracy. International Standards for Organization (ISO), Geneva: Switzerland, 2012. Available at: https://www.iso.org/iso/store.html.
- You SM, You SG, Kang SY, Bae SY, Kim JH. Evaluation of the accuracy (trueness and precision) of a maxillary trial denture according to the layer thickness: an in vitro study. J Prosthet Dent 2020;125:139-45. https://doi.org/10.1016/j.prosdent.2019.12.014
- Lee S, Hong SJ, Paek J, Pae A, Kwon KR, Noh K. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. J Adv Prosthodont 2019;11:55-64. https://doi.org/10.4047/jap.2019.11.1.55
- American Dental Association. ANSI/ADA Specification No. 8 for zinc phosphate cement. In: Guide to dental materials and devices (ed 5). Chicago: American Dental Association; 1970. p. 87-8.
- Sherman SL, Kadioglu O, Currier GF, Kierl JP, Li J. Accuracy of digital light processing printing of 3-dimensional dental models. J Am Dent Assoc 2020;157:422-8.
- Jeon JH, Kim DY, Lee JJ, Kim JH, Kim WC. Repeatability and reproducibility of individual abutment impression, assessed with a blue light scanner. J Adv Prosthodont 2016;8:214-8. https://doi.org/10.4047/jap.2016.8.3.214
- Martorelli M, Gerbino S, Giudice M, Ausiello P. A comparison between customized clear and removable orthodontic appliances manufactured using RP and CNC techniques. Dent Mater 2013;29:e1-10.
- Patzelt SB, Bishti S, Stampf S, Att W. Accuracy of computer-aided design/computer-aided manufacturing-generated dental casts based on intraoral scanner data. J Am Dent Assoc 2014;145:1133-40. https://doi.org/10.14219/jada.2014.87
- Al-Imam H, Gram M, Benetti AR, Gotfredsen K. Accuracy of stereolithography additive casts used in a digital workflow. J Prosthet Dent 2018;119:580-5. https://doi.org/10.1016/j.prosdent.2017.05.020
- Loflin WA, English JD, Borders C, Harris LM, Moon A, Holland JN, Kasper FK. Effect of print layer height on the assessment of 3D-printed models. Am J Orthod Dentofacial Orthop 2019;156:283-9. https://doi.org/10.1016/j.ajodo.2019.02.013
- Kirsch C, Ender A, Attin T, Mehl A. Trueness of four different milling procedures used in dental CAD/CAM systems. Clin Oral Investig 2017;21:551-8. https://doi.org/10.1007/s00784-016-1916-y
- Bae SY, Park JY, Jeong ID, Kim HY, Kim JH, Kim WC. Three-dimensional analysis of marginal and internal fit of copings fabricated with polyetherketoneketone (PEKK) and zirconia. J Prosthodont Res 2017;61:106-12. https://doi.org/10.1016/j.jpor.2016.07.005
- McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708
- Park JY, Bae SY, Lee JJ, Kim JH, Kim HY, Kim WC. Evaluation of the marginal and internal gaps of three different dental prostheses: comparison of the silicone replica technique and three-dimensional superimposition analysis. J Adv Prosthodont 2017;9:159-69. https://doi.org/10.4047/jap.2017.9.3.159
- You SM, You SG, Lee BI, Kim JH. Evaluation of trueness in a denture base fabricated by using CAD-CAM systems and adaptation to the socketed surface of denture base: An in vitro study. J Prosthet Dent 2020:S0022-3913(20)30573-4.
- Lehmann KM, Azar MS, Kämmerer PW, Wentaschek S, Hell EN, Scheller H. The effect of optical conditioning of preparations with scan spray on preparation form. Acta Stomatol Croat 2011;45:86-92
- You SG, You SM, Kang SY, Bae SY, Kim JH. Evaluation of the adaptation of complete denture metal bases fabricated with dental CAD-CAM systems: an in vitro study. J Prosthet Dent 2020:S0022-3913(20)30109-8.
Cited by
- Comparison of Intaglio Surface Trueness of Interim Dental Crowns Fabricated with SLA 3D Printing, DLP 3D Printing, and Milling Technologies vol.9, pp.8, 2021, https://doi.org/10.3390/healthcare9080983