DOI QR코드

DOI QR Code

Streptococcus salivarius K12의 배양조건에 따른 항균활성의 특징

Characteristics of antimicrobial activity of Streptococcus salivarius K12 by culture condition

  • 송영균 (단국대학교 치과대학 보철학교실) ;
  • 이성훈 (단국대학교 치과대학 구강미생물학교실)
  • Song, Young-Gyun (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Lee, Sung-Hoon (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University)
  • 투고 : 2021.12.09
  • 심사 : 2021.12.10
  • 발행 : 2021.12.31

초록

목적: 본 연구의 목적은 Streptococcus salivarius K12의 성장과 항균활성에 대한 배양조건의 영향을 알아보는 것이다. 연구 재료 및 방법: S. salivarius K12는 동물 또는 식물 단백질을 함유한 배지 또는 중성 및 산성 조건의 배지에서 배양되었다. S. salivarius K12의 성장은 2시간마다 분광광도계로 측정하였다. S. salivarius K12의 Streptococcus mutans, Porphyromonas gingivalis 및 Candida albicans에 대한 항균 또는 항진균 활성을 배양액을 이용한 감수성 분석으로 조사하였다. 결과: S. salivarius K12의 성장은 식물 단백질과 중성 pH 조건에서 더 빠른 성장을 보였다. S. salivarius K12의 항균 및 항진균 활성은 동물성 단백질보다 식물성 단백질을 함유한 배지에서 더 강하게 나타났다. 결론: S. salivarius K12를 세균성 구강질환에 적용하기 위해서는 S. salivarius K12가 구강 내에서 군집화하여 항균 활성을 향상시키기 위한 보조물질이 필요할 수 있다.

Purpose: The purpose of this study was to examine effects of culture conditions on the growth and antibacterial activity of Streptococcus salivarius K12. Materials and Methods: S. salivarius K12 was cultivated in medium containing animal and plant protein or in medium of neutral and acidic conditions. The growth of S. salivarius K12 was measured every 2 hours by a spectrophotometer. The antimicrobial activity of S. salivarius K12 against Streptococcus mutans and Porphyromonas gingivalis was investigated by the susceptibility assay using the spent culture medium. Results: the growth of S. salivarius K12 showed faster in medium containing plant protein and neutral pH condition. The antimicrobial and antifungal activity of S. salivarius K12 appeared stronger in medium containing plant protein than animal proteins. Conclusion: For application of S. salivarius K12 to bacterial oral disease, co-substances may be needed for S. salivarius K12 to colonize in the oral cavity and enhance the antimicrobial activity.

키워드

참고문헌

  1. Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 1994;8:263-71. https://doi.org/10.1177/08959374940080022001
  2. Song YG, Lee SH. Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface. Arch Oral Biol 2017;76:1-6. https://doi.org/10.1016/j.archoralbio.2016.12.014
  3. Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005;38:72-122. https://doi.org/10.1111/j.1600-0757.2005.00113.x
  4. Schoilew K, Ueffing H, Dalpke A, Wolff B, Frese C, Wolff D, Boutin S. Bacterial biofilm composition in healthy subjects with and without caries experience. J Oral Microbiol 2019;11:1633194. https://doi.org/10.1080/20002297.2019.1633194
  5. Velsko IM, Shaddox LM. Consistent and reproducible long-term in vitro growth of health and disease-associated oral subgingival biofilms. BMC Microbiol 2018;18:70. https://doi.org/10.1186/s12866-018-1212-x
  6. Shaddox LM, Spencer WP, Velsko IM, Al-Kassab H, Huang H, Calderon N, Aukhil I, Wallet SM. Localized aggressive periodontitis immune response to healthy and diseased subgingival plaque. J Clin Periodontol 2016;43:746-53. https://doi.org/10.1111/jcpe.12560
  7. Lee SH, Kim YJ. A comparative study of the effect of probiotics on cariogenic biofilm model for preventing dental caries. Arch Microbiol 2014;196:601-9. https://doi.org/10.1007/s00203-014-0998-7
  8. Mah TF, O'oole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001;9:34-9. https://doi.org/10.1016/S0966-842X(00)01913-2
  9. Gill H, Prasad J. Probiotics, immunomodulation, and health benefits. Adv Exp Med Biol 2008;606:423-54. https://doi.org/10.1007/978-0-387-74087-4_17
  10. Rath H, Feng D, Neuweiler I, Stumpp NS, Nackenhorst U, Stiesch M. Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: an experimental and numerical study. FEMS Microbiol Ecol 2017;93. doi: 10.1093/femsec/fix010.
  11. Hyink O, Wescombe PA, Upton M, Ragland N, Burton JP, Tagg JR. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl Environ Microbiol 2007;73:1107-13. https://doi.org/10.1128/AEM.02265-06
  12. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019;8:92 https://doi.org/10.3390/foods8030092
  13. Moon YM, Moon JE, Lee MR, Cho JW. Antibacterial Effects of Streptococcus Salivarius K12 on Oral Bacteria. Int J Clin Prev Dent 2016;12:209-20. https://doi.org/10.15236/ijcpd.2016.12.4.209
  14. Tagg JR. Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian J Med Res 2004;119:13-6.
  15. Burton JP, Chilcott CN, Wescombe PA, Tagg JR. Extended Safety Data for the Oral Cavity Probiotic Streptococcus salivarius K12. Probiotics Antimicrob Proteins 2010;2:135-44. https://doi.org/10.1007/s12602-010-9045-4
  16. Di Pierro F, Adami T, Rapacioli G, Giardini N, Streitberger C. Clinical evaluation of the oral probiotic Streptococcus salivarius K12 in the prevention of recurrent pharyngitis and/or tonsillitis caused by Streptococcus pyogenes in adults. Expert Opin Biol Ther 2013;13:339-43. https://doi.org/10.1517/14712598.2013.758711
  17. Mokhtar M, Rismayuddin NAR, Yassim ASM, Ahmad H, Wahab RA, Dashper S, Arzmi MH. Streptococcus salivarius K12 inhibits Candida albicans aggregation, biofilm formation and dimorphism. Biofouling 2021;37:767-76. https://doi.org/10.1080/08927014.2021.1967334