DOI QR코드

DOI QR Code

A Study on the Estimation of Character Value in Media Works: Based on Network Centralities and Web-Search Data

미디어 작품 캐릭터 가치 측정 연구: 네트워크 중심성 척도와 검색 데이터를 활용하여

  • 조성현 (한국과학기술원 경영대학) ;
  • 이민형 (한국과학기술원 경영대학) ;
  • 최한별 (한국과학기술원 경영대학) ;
  • 이희석 (한국과학기술원 경영대학)
  • Received : 2021.07.30
  • Accepted : 2021.10.05
  • Published : 2021.12.31

Abstract

Measuring the intangible asset has been vigorously studied for its importance. Especially, the value of character in media industry is difficult to quantitatively evaluate in spite of the industry's rapid growth. Recently, the Social Network Analysis (i.e., SNA) has been actively applied to understand human usage patterns in a media field. By using SNA methodology, this study attempts to investigate how the character network characteristics of media works are linked to human search behaviors. Our analysis reveals the positive correlation and causality between character network centralities and character search data. This result implies that the character network can be used as a clue for the valuation of character assets.

무형자산의 가치에 대한 중요성이 대두되면서 이를 측정하는 것에 관한 다양한 연구가 진행되었다. 그러나 미디어 산업의 빠른 성장에도 불구하고 해당 산업 내 캐릭터 가치를 정량적으로 평가하는 데 많은 어려움이 존재한다. 최근에는 소셜 네트워크 분석 (Social Network Analysis) 방법론이 미디어 사용자의 행태를 분석하는 데 유용하게 활용되고 있다. 본 연구는 SNS 데이터를 통하여 미디어 작품의 캐릭터 네트워크 특징과 인간의 검색 행위 사이의 상관 관계를 분석하였다. 분석 결과 미디어 작품의 캐릭터 네트워크 중심성 척도와 검색 데이터 간 유의미한 상관 관계 및 인과성이 확인되었다. 본 연구 결과는 캐릭터 네트워크가 캐릭터 자산의 가치평가를 위한 단서로서 활용될 수 있음을 시사한다.

Keywords

References

  1. 고영희, 이서현 (2016). 미디어 콘텐츠 기업의 무형자산 중심지식재산 가치 연결 전략: 아이코닉스 애니메이션 뽀로로에 대한 탐색적 사례연구. 지식경영연구, 17(3), 181-206. https://doi.org/10.15813/kmr.2016.17.3.009
  2. 박영수, 최성호 (2020). 지식재산평가의 적정성에 대한 연구: 기술보증기금의 특허가치평가를 중심으로. 지식경영연구, 21(4), 195-210. https://doi.org/10.15813/KMR.2020.21.4.010
  3. 박지혜 (2017). 초연결시대의 협력: IT 기업 간 협력 네트워크와 성과에 관한 연구. Information Systems Review, 19(2), 21-35. https://doi.org/10.14329/isr.2017.19.2.021
  4. 이선영, 이승진 (2015). 애니메이션의 게이미피케이션과 캐릭터 라이선싱 연계 연구: <터닝메카드> 를 중심으로. 만화애니메이션연구, 41, 357-378.
  5. 이유석, 차경전, 김상훈 (2016). 인터넷 정보 검색 행동과 영화흥행의 상관관계에 대한 연구. 경영학연구, 45(5), 1501-1526.
  6. 장리, 최강준, 이재영 (2017). 온라인 구전량 및 평점과 시기별 영화 흥행과의 관계. 지식경영연구, 18(2), 65-83. https://doi.org/10.15813/kmr.2017.18.2.004
  7. Aggarwal, C., & Subbian, K. (2014). Evolutionary network analysis: A survey. ACM Computing Surveys (CSUR), 47(1), 1-36. https://doi.org/10.1145/2601412
  8. Alberich, R., et al. (2014). Marvel universe looks almost like a real social network (2002). arXiv preprint cond-mat/0202174.
  9. Allee, V. (2000). The value evolution: Addressing larger implications of an intellectual capital and intangibles perspective. Journal of Intellectual Capital, 1(1), 17-32. https://doi.org/10.1108/14691930010371627
  10. Allee, V. (2008). Value network analysis and value conversion of tangible and intangible assets. Journal of Intellectual Capital, 9(1), 5-24. https://doi.org/10.1108/14691930810845777
  11. Alvarez-Hamelin, J. I., et al. (2005). K-core decomposition: A tool for the visualization of large scale networks. arXiv preprint cs/0504107.
  12. An, H. S. (2018). Essays on consumer behavior in contemporary music market in the US: Millennial's perception. Rutgers University-Graduate School-Newark.
  13. Andina-Diaz, A., & Garcia-Martinez, J. A. (2020). Reputation and news suppression in the media industry. Games and Economic Behavior, 123, 240-271. https://doi.org/10.1016/j.geb.2020.07.008
  14. Bavelas, A. (1950). Communication patterns in task- oriented groups. The Journal of the Acoustical Society of America, 22(6), 725-730. https://doi.org/10.1121/1.1906679
  15. Bazzan, A. L. (2020). I will be there for you: Clique, character centrality, and community detection in friends. Computational and Applied Mathematics, 39(3), 1-25. https://doi.org/10.1007/s40314-020-01222-7
  16. Benesty, J., et al. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1-4). Springer.
  17. Blasco-Arcas, L., et al. (2013). Adopting television as a new channel for e-commerce. The influence of interactive technologies on consumer behavior. Electronic Commerce Research, 13(4), 457-475. https://doi.org/10.1007/s10660-013-9132-1
  18. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113-120. https://doi.org/10.1080/0022250X.1972.9989806
  19. Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92(5), 1170-1182. https://doi.org/10.1086/228631
  20. Bossaert, G., & Meidert, N. (2013). "We are only as strong as we are united, as weak as we are divided" A dynamic analysis of the peer support networks in the Harry Potter books. Open Journal of Applied Sciences, 3(02), 174-185. https://doi.org/10.4236/ojapps.2013.32024
  21. Botta, F., et al. (2020). In search of art: Rapid estimates of gallery and museum visits using Google Trends. EPJ Data Science, 9(1), 14. https://doi.org/10.1140/epjds/s13688-020-00232-z
  22. Castilla-Polo, F., & Gallardo-Vazquez, D. (2016). The main topics of research on disclosures of intangible assets: A critical review. Accounting, Auditing & Accountability Journal, 29(2), 323-356. https://doi.org/10.1108/AAAJ-11-2014-1864
  23. Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2-9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
  24. Csermely, P., et al. (2013). Structure and dynamics of core/periphery networks. Journal of Complex Networks, 1(2), 93-123. https://doi.org/10.1093/comnet/cnt016
  25. Darlington, R. (1990). Multiple tests. In Regression and linear models (pp. 249-276). McGraw-Hill.
  26. Ding, L., & Yilmaz, A. (2010). Learning relations among movie characters: A social network perspective. In European Conference on Computer Vision, Springer.
  27. Edwards, M., et al. (2020). The one comparing narrative social network extraction techniques. 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE.
  28. Elberse, A., & Eliashberg, J. (2003). Demand and supply dynamics for sequentially released products in international markets: The case of motion pictures. Marketing Science, 22(3), 329-354. https://doi.org/10.1287/mksc.22.3.329.17740
  29. Eliashberg, J., et al. (2007). From story line to box office: A new approach for green-lighting movie scripts. Management Science, 53(6), 881-893. https://doi.org/10.1287/mnsc.1060.0668
  30. Eliashberg, J., et al. (2014). Assessing box office performance using movie scripts: A kernel-based approach. IEEE Transactions on Knowledge and Data Engineering, 26(11), 2639-2648. https://doi.org/10.1109/TKDE.2014.2306681
  31. Frangidis, P., et al. (2020). Sentiment analysis on movie scripts and reviews. In IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer.
  32. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543
  33. Freeman, L. C., et al. (1979). Centrality in social networks: II. Experimental results. Social Networks, 2(2), 119-141. https://doi.org/10.1016/0378-8733(79)90002-9
  34. Grant, R., et al. (2007). A review of factors affecting online consumer search behaviour from an information value perspective. Journal of Marketing Management, 23(5-6), 519-533. https://doi.org/10.1362/026725707X212801
  35. Harrison, S., et al. (2019). MARVEL'S BLOCKBUSTER MACHINE How the studio balances continuity and renewal. Harvard Business Review, 97(4), 136-+.
  36. Hineline, P. N. (2018). Narrative: Why it's important, and how it works. Perspectives on Behavior Science, 41(2), 471-501. https://doi.org/10.1007/s40614-018-0137-x
  37. Hu, Y., et al. (2014). Decomposing the impact of advertising: Augmenting sales with online search data. Journal of Marketing Research, 51(3), 300-319. https://doi.org/10.1509/jmr.12.0215
  38. John, M., et al. (2019). A visual approach for the comparative analysis of character networks in narrative texts. 2019 IEEE Pacific Visualization Symposium (PacificVis), IEEE.
  39. Jun, S. P., et al. (2014). A study of the method using search traffic to analyze new technology adoption. Technological Forecasting and Social Change, 81, 82-95. https://doi.org/10.1016/j.techfore.2013.02.007
  40. Kulkarni, G., et al. (2012). Using online search data to forecast new product sales. Decision Support Systems, 52(3), 604-611. https://doi.org/10.1016/j.dss.2011.10.017
  41. Kumar, A., et al. (2014). Information discovery and the long tail of motion picture content. MIS Quarterly, 38(4), 1057-1078. https://doi.org/10.25300/MISQ/2014/38.4.06
  42. Kwak, D. (2010). A study on the purchase intention of character product and the attribute factors of character design. The Journal of Korean Society of Design Culture, 16(3), 11-23.
  43. Labatut, V., & Bost, X. (2019). Extraction and analysis of fictional character networks: A survey. ACM Computing Surveys(CSUR), 52(5), 1-40.
  44. Lafhel, M., et al. (2020). Movie script similarity using multilayer network portrait divergence. In International Conference on Complex Networks and Their Applications, Springer.
  45. Lazer, D., et al. (2014). The parable of Google Flu: Traps in big data analysis. Science, 343(6176), 1203-1205. https://doi.org/10.1126/science.1248506
  46. Lee, O. J., & Jung, J. J. (2020). Story embedding: Learning distributed representations of stories based on character networks. Artificial Intelligence, 281, 103235. https://doi.org/10.1016/j.artint.2020.103235
  47. Masias, V. H., et al. (2017). Exploring the prominence of Romeo and Juliet's characters using weighted centrality measures. Digital Scholarship in the Humanities, 32(4), 837-858.
  48. Molloy, J. C., et al. (2011). Making intangibles "tangible" in tests of resource-based theory: A multidisciplinary construct validation approach. Journal of Management, 37(5), 1496-1518. https://doi.org/10.1177/0149206310394185
  49. O'Connor, N., & Kim, S. (2016). Media-related tourism phenomena: A review of the key issues. In Mediating the tourist experience (pp. 13-32). Routledge.
  50. Opsahl, T. (2013). Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Networks, 35(2), 159-167. https://doi.org/10.1016/j.socnet.2011.07.001
  51. Shrum, L. (2012). The psychology of entertainment media: Blurring the lines between entertainment and persuasion. Taylor & Francis.
  52. Sparavigna, A. C. (2013). On social networks in plays and novels. International Journal of Sciences, 2(10).
  53. Stiller, J., et al. (2003). The small world of Shakespeare's plays. Human Nature, 14(4), 397-408. https://doi.org/10.1007/s12110-003-1013-1
  54. Tsai, C. M., et al. (2013). Scene-based movie summarization via role-community networks. IEEE Transactions on Circuits and Systems for Video Technology, 23(11), 1927-1940. https://doi.org/10.1109/TCSVT.2013.2269186
  55. Vespignani, A. (2009). Predicting the behavior of techno-social systems. Science, 325(5939), 425-428. https://doi.org/10.1126/science.1171990
  56. Wang, Y. S., et al. (2013). What drives purchase intention in the context of online content services? The moderating role of ethical self-efficacy for online piracy. International Journal of Information Management, 33(1), 199-208. https://doi.org/10.1016/j.ijinfomgt.2012.09.004
  57. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University Press
  58. Waumans, M. C., et al. (2015). Topology analysis of social networks extracted from literature. PloS One, 10(6), e0126470. https://doi.org/10.1371/journal.pone.0126470
  59. Weng, C. Y., et al. (2009). Rolenet: Movie analysis from the perspective of social networks. IEEE Transactions on Multimedia, 11(2), 256-271. https://doi.org/10.1109/TMM.2008.2009684
  60. Yadav, M., & Srivastava, D. M. K. (2020). A study of changing consumer trends in the entertainment industry. Iconic Research and Engineering Journals, 4(4), 9-16.