References
- 고영희, 이서현 (2016). 미디어 콘텐츠 기업의 무형자산 중심지식재산 가치 연결 전략: 아이코닉스 애니메이션 뽀로로에 대한 탐색적 사례연구. 지식경영연구, 17(3), 181-206. https://doi.org/10.15813/kmr.2016.17.3.009
- 박영수, 최성호 (2020). 지식재산평가의 적정성에 대한 연구: 기술보증기금의 특허가치평가를 중심으로. 지식경영연구, 21(4), 195-210. https://doi.org/10.15813/KMR.2020.21.4.010
- 박지혜 (2017). 초연결시대의 협력: IT 기업 간 협력 네트워크와 성과에 관한 연구. Information Systems Review, 19(2), 21-35. https://doi.org/10.14329/isr.2017.19.2.021
- 이선영, 이승진 (2015). 애니메이션의 게이미피케이션과 캐릭터 라이선싱 연계 연구: <터닝메카드> 를 중심으로. 만화애니메이션연구, 41, 357-378.
- 이유석, 차경전, 김상훈 (2016). 인터넷 정보 검색 행동과 영화흥행의 상관관계에 대한 연구. 경영학연구, 45(5), 1501-1526.
- 장리, 최강준, 이재영 (2017). 온라인 구전량 및 평점과 시기별 영화 흥행과의 관계. 지식경영연구, 18(2), 65-83. https://doi.org/10.15813/kmr.2017.18.2.004
- Aggarwal, C., & Subbian, K. (2014). Evolutionary network analysis: A survey. ACM Computing Surveys (CSUR), 47(1), 1-36. https://doi.org/10.1145/2601412
- Alberich, R., et al. (2014). Marvel universe looks almost like a real social network (2002). arXiv preprint cond-mat/0202174.
- Allee, V. (2000). The value evolution: Addressing larger implications of an intellectual capital and intangibles perspective. Journal of Intellectual Capital, 1(1), 17-32. https://doi.org/10.1108/14691930010371627
- Allee, V. (2008). Value network analysis and value conversion of tangible and intangible assets. Journal of Intellectual Capital, 9(1), 5-24. https://doi.org/10.1108/14691930810845777
- Alvarez-Hamelin, J. I., et al. (2005). K-core decomposition: A tool for the visualization of large scale networks. arXiv preprint cs/0504107.
- An, H. S. (2018). Essays on consumer behavior in contemporary music market in the US: Millennial's perception. Rutgers University-Graduate School-Newark.
- Andina-Diaz, A., & Garcia-Martinez, J. A. (2020). Reputation and news suppression in the media industry. Games and Economic Behavior, 123, 240-271. https://doi.org/10.1016/j.geb.2020.07.008
- Bavelas, A. (1950). Communication patterns in task- oriented groups. The Journal of the Acoustical Society of America, 22(6), 725-730. https://doi.org/10.1121/1.1906679
- Bazzan, A. L. (2020). I will be there for you: Clique, character centrality, and community detection in friends. Computational and Applied Mathematics, 39(3), 1-25. https://doi.org/10.1007/s40314-020-01222-7
- Benesty, J., et al. (2009). Pearson correlation coefficient. In Noise reduction in speech processing (pp. 1-4). Springer.
- Blasco-Arcas, L., et al. (2013). Adopting television as a new channel for e-commerce. The influence of interactive technologies on consumer behavior. Electronic Commerce Research, 13(4), 457-475. https://doi.org/10.1007/s10660-013-9132-1
- Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113-120. https://doi.org/10.1080/0022250X.1972.9989806
- Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92(5), 1170-1182. https://doi.org/10.1086/228631
- Bossaert, G., & Meidert, N. (2013). "We are only as strong as we are united, as weak as we are divided" A dynamic analysis of the peer support networks in the Harry Potter books. Open Journal of Applied Sciences, 3(02), 174-185. https://doi.org/10.4236/ojapps.2013.32024
- Botta, F., et al. (2020). In search of art: Rapid estimates of gallery and museum visits using Google Trends. EPJ Data Science, 9(1), 14. https://doi.org/10.1140/epjds/s13688-020-00232-z
- Castilla-Polo, F., & Gallardo-Vazquez, D. (2016). The main topics of research on disclosures of intangible assets: A critical review. Accounting, Auditing & Accountability Journal, 29(2), 323-356. https://doi.org/10.1108/AAAJ-11-2014-1864
- Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2-9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
- Csermely, P., et al. (2013). Structure and dynamics of core/periphery networks. Journal of Complex Networks, 1(2), 93-123. https://doi.org/10.1093/comnet/cnt016
- Darlington, R. (1990). Multiple tests. In Regression and linear models (pp. 249-276). McGraw-Hill.
- Ding, L., & Yilmaz, A. (2010). Learning relations among movie characters: A social network perspective. In European Conference on Computer Vision, Springer.
- Edwards, M., et al. (2020). The one comparing narrative social network extraction techniques. 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), IEEE.
- Elberse, A., & Eliashberg, J. (2003). Demand and supply dynamics for sequentially released products in international markets: The case of motion pictures. Marketing Science, 22(3), 329-354. https://doi.org/10.1287/mksc.22.3.329.17740
- Eliashberg, J., et al. (2007). From story line to box office: A new approach for green-lighting movie scripts. Management Science, 53(6), 881-893. https://doi.org/10.1287/mnsc.1060.0668
- Eliashberg, J., et al. (2014). Assessing box office performance using movie scripts: A kernel-based approach. IEEE Transactions on Knowledge and Data Engineering, 26(11), 2639-2648. https://doi.org/10.1109/TKDE.2014.2306681
- Frangidis, P., et al. (2020). Sentiment analysis on movie scripts and reviews. In IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer.
- Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543
- Freeman, L. C., et al. (1979). Centrality in social networks: II. Experimental results. Social Networks, 2(2), 119-141. https://doi.org/10.1016/0378-8733(79)90002-9
- Grant, R., et al. (2007). A review of factors affecting online consumer search behaviour from an information value perspective. Journal of Marketing Management, 23(5-6), 519-533. https://doi.org/10.1362/026725707X212801
- Harrison, S., et al. (2019). MARVEL'S BLOCKBUSTER MACHINE How the studio balances continuity and renewal. Harvard Business Review, 97(4), 136-+.
- Hineline, P. N. (2018). Narrative: Why it's important, and how it works. Perspectives on Behavior Science, 41(2), 471-501. https://doi.org/10.1007/s40614-018-0137-x
- Hu, Y., et al. (2014). Decomposing the impact of advertising: Augmenting sales with online search data. Journal of Marketing Research, 51(3), 300-319. https://doi.org/10.1509/jmr.12.0215
- John, M., et al. (2019). A visual approach for the comparative analysis of character networks in narrative texts. 2019 IEEE Pacific Visualization Symposium (PacificVis), IEEE.
- Jun, S. P., et al. (2014). A study of the method using search traffic to analyze new technology adoption. Technological Forecasting and Social Change, 81, 82-95. https://doi.org/10.1016/j.techfore.2013.02.007
- Kulkarni, G., et al. (2012). Using online search data to forecast new product sales. Decision Support Systems, 52(3), 604-611. https://doi.org/10.1016/j.dss.2011.10.017
- Kumar, A., et al. (2014). Information discovery and the long tail of motion picture content. MIS Quarterly, 38(4), 1057-1078. https://doi.org/10.25300/MISQ/2014/38.4.06
- Kwak, D. (2010). A study on the purchase intention of character product and the attribute factors of character design. The Journal of Korean Society of Design Culture, 16(3), 11-23.
- Labatut, V., & Bost, X. (2019). Extraction and analysis of fictional character networks: A survey. ACM Computing Surveys(CSUR), 52(5), 1-40.
- Lafhel, M., et al. (2020). Movie script similarity using multilayer network portrait divergence. In International Conference on Complex Networks and Their Applications, Springer.
- Lazer, D., et al. (2014). The parable of Google Flu: Traps in big data analysis. Science, 343(6176), 1203-1205. https://doi.org/10.1126/science.1248506
- Lee, O. J., & Jung, J. J. (2020). Story embedding: Learning distributed representations of stories based on character networks. Artificial Intelligence, 281, 103235. https://doi.org/10.1016/j.artint.2020.103235
- Masias, V. H., et al. (2017). Exploring the prominence of Romeo and Juliet's characters using weighted centrality measures. Digital Scholarship in the Humanities, 32(4), 837-858.
- Molloy, J. C., et al. (2011). Making intangibles "tangible" in tests of resource-based theory: A multidisciplinary construct validation approach. Journal of Management, 37(5), 1496-1518. https://doi.org/10.1177/0149206310394185
- O'Connor, N., & Kim, S. (2016). Media-related tourism phenomena: A review of the key issues. In Mediating the tourist experience (pp. 13-32). Routledge.
- Opsahl, T. (2013). Triadic closure in two-mode networks: Redefining the global and local clustering coefficients. Social Networks, 35(2), 159-167. https://doi.org/10.1016/j.socnet.2011.07.001
- Shrum, L. (2012). The psychology of entertainment media: Blurring the lines between entertainment and persuasion. Taylor & Francis.
- Sparavigna, A. C. (2013). On social networks in plays and novels. International Journal of Sciences, 2(10).
- Stiller, J., et al. (2003). The small world of Shakespeare's plays. Human Nature, 14(4), 397-408. https://doi.org/10.1007/s12110-003-1013-1
- Tsai, C. M., et al. (2013). Scene-based movie summarization via role-community networks. IEEE Transactions on Circuits and Systems for Video Technology, 23(11), 1927-1940. https://doi.org/10.1109/TCSVT.2013.2269186
- Vespignani, A. (2009). Predicting the behavior of techno-social systems. Science, 325(5939), 425-428. https://doi.org/10.1126/science.1171990
- Wang, Y. S., et al. (2013). What drives purchase intention in the context of online content services? The moderating role of ethical self-efficacy for online piracy. International Journal of Information Management, 33(1), 199-208. https://doi.org/10.1016/j.ijinfomgt.2012.09.004
- Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. New York: Cambridge University Press
- Waumans, M. C., et al. (2015). Topology analysis of social networks extracted from literature. PloS One, 10(6), e0126470. https://doi.org/10.1371/journal.pone.0126470
- Weng, C. Y., et al. (2009). Rolenet: Movie analysis from the perspective of social networks. IEEE Transactions on Multimedia, 11(2), 256-271. https://doi.org/10.1109/TMM.2008.2009684
- Yadav, M., & Srivastava, D. M. K. (2020). A study of changing consumer trends in the entertainment industry. Iconic Research and Engineering Journals, 4(4), 9-16.