DOI QR코드

DOI QR Code

Characterization of Phenotypic Traits and Evaluation of Glucosinolate Contents in Radish Germplasms (Raphanus sativus L.)

  • Kim, Bichsaem (National Agrobiodiversity Center, National Institute of Agricultural Sciences) ;
  • Hur, Onsook (National Agrobiodiversity Center, National Institute of Agricultural Sciences) ;
  • Lee, Jae-Eun (National Agrobiodiversity Center, National Institute of Agricultural Sciences) ;
  • Assefa, Awraris Derbie (National Agrobiodiversity Center, National Institute of Agricultural Sciences) ;
  • Ko, Ho-Cheol (Client Service Division, Planning and Coordination Bureau, RDA) ;
  • Chung, Yun-Jo (National Creative Research Laboratory for Ca2+ Signaling Network, Jeonbuk National University Medical School) ;
  • Rhee, Ju-hee (National Agrobiodiversity Center, National Institute of Agricultural Sciences) ;
  • Hahn, Bum-Soo (National Agrobiodiversity Center, National Institute of Agricultural Sciences)
  • Received : 2021.10.12
  • Accepted : 2021.11.15
  • Published : 2021.12.01

Abstract

The edible roots of radish (Raphanus sativus L.) are consumed worldwide. For characterization and evaluation of the agronomic traits and health-promoting chemicals in radish germplasms, new germplasm breeding materials need to be identified. The objectives of this study were to evaluate the phenotypic traits and glucosinolate contents of radish roots from 110 germplasms, by analyzing correlations between 10 quantitative phenotypic traits and the individual and total contents of five glucosinolates. Phenotypic characterization was performed based on descriptors from the UPOV and IBPGR, and glucosinolate contents were analyzed using liquid chromatography-tandem mass spectrometry in multiple reaction monitoring mode (MRM). Regarding the phenotypic traits, a significant correlation between leaf length and root weight was observed. Glucoraphasatin was the main glucosinolate, accounting for an average of 71% of the total glucosinolates in the germplasms; moreover, its content was significantly correlated with that of glucoerucin, its precursor. Principal component analysis indicated that the 110 germplasms could be divided into five groups based on their glucosinolate contents. High levels of free-radical scavenging activity (DPPH) were observed in red radishes. These results shed light on the beneficial traits that could be targeted by breeders, and could also promote diet diversification by demonstrating the health benefits of various germplasms.

Keywords

Acknowledgement

The authors would like to acknowledge funding through grants allocated to B. K. from the Rural Development Administration (Project No. 01427702), Republic of Korea. This study was also supported by the 2021 Postdoctoral Fellowship Program (A.D.A.) of the National Institute of Agricultural Sciences, RDA, Republic of Korea.

References

  1. Afroz, T., O. Hur, N. Ro, J.E. Lee, A. Hwang, B. Kim, A.D. Assefa, J.H. Rhee, J.S. Sung and H.S. Lee. 2021. Evaluation of bioassay methods to assess bacterial soft rot resistance in radish cultivars. J. Life Sci. 31:609-616. https://doi.org/10.5352/JLS.2021.31.7.609
  2. Aires, A., V. Mota, M. Saavedra, E. Rosa and R. Bennett. 2009. The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J. Appl. Microbiol. 106:2086-2095. https://doi.org/10.1111/j.1365-2672.2009.04180.x
  3. Barillari, J., D. Canistro, M. Paolini, F. Ferroni, G.F. Pedulli, R. Iori and L. Valgimigli. 2005. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J. Agr. Food Chem. 53:2475-2482. https://doi.org/10.1021/jf047945a
  4. Bhandari, S.R., J.S. Jo and J.G. Lee. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827-15841. https://doi.org/10.3390/molecules200915827
  5. Brand-Williams, W., M.E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Tech. 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  6. Cai, Y.X., J.H. Wang, C. McAuley, M.A. Augustin and N.S. Terefe. 2019. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. J. Functional Foods 61:103461. https://doi.org/10.1016/j.jff.2019.103461
  7. Cho, W.K. 2010. A historical study of Korean traditional radish kimchi. J. Korean Soc. Food Cult. 25:428-455.
  8. De Nicola, G.R., M. Bagatta, E. Pagnotta, D. Angelino, L. Gennari, P. Ninfali, P. Rollin and R. Iori. 2013. Comparison of bioactive phytochemical content and release of isothiocyanates in selected Brassica sprouts. Food Chem. 141:297-303. https://doi.org/10.1016/j.foodchem.2013.02.102
  9. Fahey, J.W., A.T. Zalcmann and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
  10. Geum, N.G., J.H. Yeo, J.H. Yu, M.Y. Choi, J.W. Lee, J.K. Baek and J.B. Jeong. 2021. In vitro immunostimulatory activity of Bok Choy (Brassica campestris var. chinensis) sprouts in RAW264.7 macrophage cells. Korean J. Plant Res. 34:203-215. https://doi.org/10.7732/KJPR.2021.34.3.203
  11. Gratacos-Cubarsi, M., A. Ribas-Agusti, J.A. Garcia-Regueiro and M. Castellari. 2010. Simultaneous evaluation of intact glucosinolates and phenolic compounds by UPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chem. 121:257-263. https://doi.org/10.1016/j.foodchem.2009.11.081
  12. Heo, Y., M.J. Kim, J.W. Lee and B. Moon. 2019. Muffins enriched with dietary fiber from kimchi by-product: Baking properties, physical-chemical properties, and consumer acceptance. Food Sci. Nutr. 7:1778-1785. https://doi.org/10.1002/fsn3.1020
  13. Hwang, I.M., B. Park, Y.M. Dang, S.Y. Kim and H.Y. Seo. 2019. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS. Food Chem. 282:127-133. https://doi.org/10.1016/j.foodchem.2018.12.036
  14. International Board for Plant Genetic Resources (IBPGR). 1990. Descriptors for Brassica and Raphanus, https://www.bioversityinternational.org/e-library/publications/detail/descriptors-for-brassica-and-raphanus/ (Accessed on 10 Oct, 2021)
  15. Ibrahim, M.D., S.B. Kntayya, N. Mohd Ain, R. Iori, C. Ioannides and A.F. Abdull Razis. 2018. Induction of apoptosis and cytotoxicity by raphasatin in human breast adenocarcinoma MCF-7 cells. Molecules 23:3092. https://doi.org/10.3390/molecules23123092
  16. Ishida, M., T. Kakizaki, Y. Morimitsu, T. Ohara, K. Hatakeyama, H. Yoshiaki, J. Kohori and T. Nishio. 2015. Novel glucosinolate composition lacking 4-methylthio-3-butenyl glucosinolate in Japanese white radish (Raphanus sativus L.). Theor. Appl. Genet. 128: 2037-2046. https://doi.org/10.1007/s00122-015-2564-3
  17. Jatoi, S.A., S.U. Siddiqui, M.S. Masood, A. Javaid, M. Iqbal and O.U. Sayal. 2011. Genetic diversity in radish germplasm for morphological traits and seed storage proteins. Pakistan J. Bot. 43:2259-2268.
  18. Jeon, B.W., M.H. Oh, E.O. Kim, H.S. Kim and W.B. Chae. 2018. Different vegetative growth stages of kimchi cabbage (Brassica rapa L.) exhibit specific glucosinolate composition and content. Hortic. Envir. Biotech. 59:355-362. https://doi.org/10.1007/s13580-018-0040-0
  19. Kakizaki, T., H. Kitashiba, Z. Zou, F. Li, N. Fukino, T. Ohara, T. Nishio and M. Ishida. 2017. A 2-oxoglutarate-dependent dioxygenase mediates the biosynthesis of glucoraphasatin in radish. Plant Physiol. 173:1583-1593. https://doi.org/10.1104/pp.16.01814
  20. Kaneko,Y. and Y. Matsuzawa. 1993. Radish (Raphanus sativus L.), p. 487-505. In: G. Kalloo and B.O. Bergh (eds). Genetic improvement of vegetable crops. Pergamon Press, Oxford, England.
  21. Kim, M.J., H.J. Yang, H.Y. Lee, Y.M. Park, D.Y. Shin, Y.H. Lee, Y.G. Kang, T.S. Kim, S.P. Lee and K.H. Park. 2020. Improving effects of Brassica oleraceae L. var. italica sprout extract on alcohol liver dysfunction. Korean J. Plant Res. 33:163-169. https://doi.org/10.7732/KJPR.2020.33.3.163
  22. Kurina, A.B., D.L. Kornyukhin, A.E. Solovyeva and A.M. Artemyeva. 2021. Genetic diversity of phenotypic and biochemical traits in VIR radish (Raphanus sativus L.) germplasm collection. Plants 10:1799. https://doi.org/10.3390/plants10091799
  23. Kwon, S.T., I.Y. and J.H. Shin. 2020. Investigation of defense and vegetative growth related traits of recombinant inbred lines of Brassica rapa. Korean J. Plant Res. 33:615-623. https://doi.org/10.7732/KJPR.2020.33.6.615
  24. Liang, H., Y. Wei, R. Li, L. Cheng, Q. Yuan and F. Zheng. 2018. Intensifying sulforaphane formation in broccoli sprouts by using other cruciferous sprouts additions. Food Sci. Biotech. 27:957-962. https://doi.org/10.1007/s10068-018-0347-8
  25. Liu, M., L. Zhang, S.L. Ser, J.R. Cumming and K.M. Ku. 2018. Comparative phytonutrient analysis of broccoli by-products: The potentials for broccoli by-product utilization. Molecules 23:900. https://doi.org/10.3390/molecules23040900
  26. Montaut, S., J. Barillari, R. Iori and P. Rollin. 2010. Glucoaphasatin: Chemistry, occurrence, and biological properties. Phytochemistry 71:6-12. https://doi.org/10.1016/j.phytochem.2009.09.021
  27. Park, S., M.V. Arasu, M.K. Lee, J.H. Chun, J.M. Seo, S.W. Lee, N.A. Al-Dhabi and S.J. Kim. 2014. Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.). Food Chem. 145:77-85. https://doi.org/10.1016/j.foodchem.2013.08.010
  28. Rajalingam, N., J.H. Yoon, B. Yoon, N.B. Hung, W.I. Kim, H. Kim, B.Y. Park and S.R. Kim. 2021. Prevalence and molecular characterization of Escherichia coli isolates during radish sprout production in the Republic of Korea. Appl. Biol. Chem. 64:1-8.
  29. Rhee, J.H., S. Choi, J.E. Lee, O.S. Hur, N.Y. Ro, A.J. Hwang, H.C. Ko, Y.J. Chung, J.J. Noh and A.D. Assefa. 2020. Glucosinolate content in Brassica genetic resources and their distribution pattern within and between inner, middle, and outer leaves. Plants 9:1421. https://doi.org/10.3390/plants9111421
  30. Scholl, C., B.D. Eshelman, D.M. Barnes and P.R. Hanlon. 2011. Raphasatin is a more potent inducer of the detoxification enzymes than its degradation products. J. Food Sci. 76:C504-C511. https://doi.org/10.1111/j.1750-3841.2011.02078.x
  31. Singh, B., T. Koley, P. Karmakar, A. Tripathi, B. Singh and M. Singh. 2017. Pigmented radish (Raphanus sativus): Genetic variability, heritability and interrelationships of total phenolics, anthocyanins and antioxidant activity. Indian J. Agr. Sci. 87:1600-1606.
  32. Suzuki, I., Y.M. Cho, T. Hirata, T. Toyoda, J.I. Akagi, Y. Nakamura, A. Sasaki, T. Nakamura, S. Okamoto and K. Shirota. 2017. Toxic effects of 4-methylthio-3-butenyl isothiocyanate (Raphasatin) in the rat urinary bladder without genotoxicity. J. Appl. Toxicol. 37:485-494. https://doi.org/10.1002/jat.3384
  33. Suzuki, I., Y.M. Cho, T. Hirata, T. Toyoda, J.I. Akagi, Y. Nakamura, E.Y. Park, A. Sasaki, T. Nakamura and S. Okamoto. 2016. 4-Methylthio-3-butenyl isothiocyanate (raphasatin) exerts chemopreventive effects against esophageal carcinogenesis in rats. J. Toxicol. Pathol. 29:237-246. https://doi.org/10.1293/tox.2016-0037
  34. International Union for the Protection of new Varieties of plants (UPOV). 2021. For distictess, uniformity and stability, https://www.upov.int/edocs/mdocs/upov/en/twv/44/tg_63_7_proj_4_and_64_7_proj_3.pdf (Accessed on 10 Oct, 2021).
  35. Vavilov, N.I. 1926. Studies on the origin of cultivated plants. Bull. Appl. Bot. Plant Breeding 14:1-245.
  36. Wang, Q., Y. Wang, H. Sun, L. Sun and L. Zhang. 2020. Transposon-induced methylation of the RsMYB1 promoter disturbs anthocyanin accumulation in red-fleshed radish. J. Exp. Bot. 71: 2537-2550. https://doi.org/10.1093/jxb/eraa010
  37. Yi, G., S. Lim, W.B. Chae, J.E. Park, H.R. Park, E.J. Lee and J.H. Huh. 2016. Root glucosinolate profiles for screening of radish (Raphanus sativus L.) genetic resources. J. Agr. Food Chem. 64:61-70. https://doi.org/10.1021/acs.jafc.5b04575