DOI QR코드

DOI QR Code

Antioxidant Activities and Total Phenolic Contents of Three Legumes

  • Received : 2021.10.13
  • Accepted : 2021.11.12
  • Published : 2021.12.01

Abstract

Legumes have been important components of the human diet. They contain not only protein, starch, and dietary fiber, but also various phenolic compounds such as flavonoids and phenolic acids. The importance of phenolic compounds to human health is well known due to their antioxidant activities. In this study, three legumes (adzuki beans, common beans, and black soybeans) frequently cultivated in Korea were evaluated for their total phenolic content (TPC) and antioxidant activities using DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azinobis (3-ethylbenzothiazoline 6-sulfonate)), and FRAP (ferric reducing antioxidant potential) assays. In addition, correlations between agricultural traits and antioxidant activities of these three legumes were analyzed. Antioxidant activities assessed by DPPH, ABTS, and FRAP assays and TPC showed wide variations among legumes types and accessions. Among the three legumes, adzuki beans showed higher TPC and antioxidant activity than the other two legumes. In correlation analysis, seed size showed negative correlations with antioxidant activities and TPC. In principal component analysis and hierarchical clustering analysis, each of the three legumes was clearly separate. Results of this study can be used as basic information for developing functional materials for each legume. They can also help us understand the overall antioxidant activity of the three legumes.

Keywords

Acknowledgement

This research was funded by the [Research Program for Agricultural Science and Technology Development, National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea], grant number [PJ010883].

References

  1. Amarowicz, R. and B. Raab. 1997. Antioxidative activity of leguminous seed extracts evaluated by chemiluminescence methods. Z. Naturforsch. C 52:709-712. https://doi.org/10.1515/znc-1997-9-1022
  2. Amarowicz, R. and R.B. Pegg. 2008. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 110:865-878. https://doi.org/10.1002/ejlt.200800114
  3. Amarowicz, R., A. Troszynska, N. Baryulko-Pikielna and F. Shahidi. 2004. Polyphenolics extracts from legume seeds: Correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J. Food Lipids 11: 278-286. https://doi.org/10.1111/j.1745-4522.2004.01143.x
  4. Ariza-Nieto, M., M.W. Blair, R.M. Welch and R.P. Glahn. 2007. Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J. Agri. Food Chem. 55:7950-7956. https://doi.org/10.1021/jf070023y
  5. Balasundram, N., K. Sundram and S. Samman. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 99:191-203. https://doi.org/10.1016/j.foodchem.2005.07.042
  6. Berghofer, E., B. Grzeskowiak, N. Mundigler, W. Sentall and J. Walcak. 2009. Antioxidative properties of faba bean, soybean and oat tempeh. Int. J. Food Sci. Nutr. 49: 45-54. https://doi.org/10.3109/09637489809086403
  7. Blair, M.W., P. Izquierdo, C. Astudillo and M.A. Grusak. 2013. A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front. Plant Sci. 4:275-275. https://doi.org/10.3389/fpls.2013.00275
  8. Bors, W. and C. Michel. 2002. Chemistry of the antioxidant effect of polyphenols. Ann. N. Y. Acad. Sci. 957:57-69. https://doi.org/10.1111/j.1749-6632.2002.tb02905.x
  9. Cardador-Martinez, A., G. Loarca-Pina and B.D. Oomah. 2002. Antioxidant activity in common beans (Phaseolus vulgaris L.). J. Agri. Food Chem. 50:6975-6980. https://doi.org/10.1021/jf020296n
  10. Choi, J.-H.C., M. Lee, H.J. Kim, J.I.K. Kwon and Y. Lee. 2017. Effects of black soybean and fermented black soybean extracts on proliferation of human follicle dermal papilla cells. Kor. Soc. Food Sci. Nutr. 46:671-680.
  11. Choi, Y.-M., H. Yoon, S. Lee, H.-C. Ko, M.-J. Shin, M.-C. Lee, S. Oh and K. T. Desta. 2020. Comparison of isoflavone composition and content in seeds of soybean (Glycine max (L.) Merrill) germplasms with different seed coat colors and days to maturity. Kor. J. Plant Res. 33:558-577. https://doi.org/10.7732/KJPR.2020.33.6.558
  12. Dudonne, S., X. Vitrac, P. Coutiere, M. Woillez and J.M. Merillon. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agri. Food Chem. 57:1768-1774. https://doi.org/10.1021/jf803011r
  13. Duenas, M., T. Hernandez and I. Estrella. 2006. Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem. 98:95-103. https://doi.org/10.1016/j.foodchem.2005.05.052
  14. Fang, Y.Z., S. Yang and G. Wu. 2002. Free radicals, antioxidants, and nutrition. Nutrition 18:872-879. https://doi.org/10.1016/S0899-9007(02)00916-4
  15. Gowri, S. and K. Vasantha. 2010. Free radical scavenging and antioxidant activity of leaves from agathi (Sesbania grandiflora) (L.) Pers. Amer. Eur. J. Sci. Res. 5:114-119.
  16. Hammer, O., D.A.T. Harper and P.D. Ryan. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontol. Electron. 4:1-9.
  17. Harlen, W.C. and I.R.A.P. Jati. 2018. Chapter 8 - Antioxidant activity of anthocyanins in common legume grains: In Polyphenols: Mechanisms of action in human health and disease, Elsevier: USA. pp. 81-92.
  18. Heim, K.E., A.R. Tagliaferro and D.J. Bobilya. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relation-ships. J. Nutr. Biochem. 13:572-584. https://doi.org/10.1016/S0955-2863(02)00208-5
  19. Katalinic, V., M. Milos, T. Kulisic and M. Jukic. 2006. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94:550-557. https://doi.org/10.1016/j.foodchem.2004.12.004
  20. Kim, E.H., H.K. Song, Y.J.P. Park, J.R. Lee, M.Y. Kim and I.-M.C. Chung. 2011. Determination of phenolic compounds in adzuki bean (Vigna angularis) germplasm. Kor. J. Crop Sci. 56: 375-384. https://doi.org/10.7740/KJCS.2011.56.4.375
  21. KOSIS (Korean Statistical Information Service) (2021). www. kosis.kr. Available online: (accessed on 05 July 2021).
  22. Kwak, J.H.K., Y.N.J. Jo, J.H. Jeong, H.J. Kim, S.I. Jin, S.-G. Choi and H.J. Heo. 2013. Protective effects of black soybean seed coat extracts against oxidative stress-induced neurotoxicity. Kor. J. Food Sci. Technol. 45:257-261. https://doi.org/10.9721/KJFST.2013.45.2.257
  23. Lee, H., M. Yu, H.-J. Kim, J.S. Sung, H.S. Jeong and J. Lee. 2020. Antioxidant and anti-diabetic activities of ethanol extracts of cereal grains and legumes. Kor. Soc. Food Sci. Nutr. 49:323-328. https://doi.org/10.3746/jkfn.2020.49.4.323
  24. Lee, K.J., J.-R. Lee, K.-H. Ma, Y.-H. Cho, G.-A. Lee and J.-W. Chung. 2016. Anthocyanin and isoflavone contents in Korean black soybean landraces and their antioxidant activities. Plant Breed. Biotech. 4:441-452. https://doi.org/10.9787/PBB.2016.4.4.441
  25. Lee, K.J., K.-H. Ma, Y.-H. Cho, J.-R. Lee, G.-A. Lee and J.-W. Chung. 2017. Phytochemical distribution and antioxidant activities of Korean adzuki bean (Vigna angularis) landraces. J. Crop Sci. Biotech. 20:205-212. https://doi.org/10.1007/s12892-017-0056-0
  26. Lee, K.J., M.-J. Shin, G.-T. Cho, G.-A. Lee, K.-H. Ma, J.-W. Chung and J.-R. Lee. 2018. Evaluation of phytochemical contents and antioxidant activity of Korean common bean (Phaseolus vulgaris L) landraces. Kor. Soc. Int. Agric. 30:1-13. https://doi.org/10.12719/KSIA.2018.30.1.1
  27. Li, H.-B., C.-C. Wong, K.-W. Cheng and F. Chen. 2008. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT - Food Sci. Technol. 41:385-390. https://doi.org/10.1016/j.lwt.2007.03.011
  28. Lin, D., M. Xiao, J. Zhao, Z. Li, B. Xing, X. Li, M. Kong, L. Li, Q. Zhang, Y. Liu, H. Chen, W. Qin, H. Wu and S. Chen. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21:1374. https://doi.org/10.3390/molecules21101374
  29. Parr, A.J. and G.P. Bolwell. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Sci. Food Agri. 80:985-1012. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<985::AID-JSFA572>3.0.CO;2-7
  30. R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (accessed on 05 July 2021).
  31. Rice-Evans, C.A., N.J. Miller and G. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20:933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  32. Sim, U., S. Lee, S.H. Lee, Y. Choi and J.L. Lee. 2018. Change in vitamin E and K contents and true retention of cereal and legume by cooking. Kor. Soc. Food Sci. Nutr. 47:675-681. https://doi.org/10.3746/jkfn.2018.47.6.675
  33. Singh, B., J.P. Singh, A. Kaur and N. Singh. 2017. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int. 101:1-16. https://doi.org/10.1016/j.foodres.2017.09.026
  34. Sung, J.S.S., S.B.S. Song, J.Y. Kim, Y.J. An, J.E. Park, M.E. Choe, J.H. Chu, T.J. Ha and S.I. Han. 2020. Variation in physicochemical characteristics and antioxidant activities of small redbean cultivars. Kor. J. Crop Sci. 65:231-240. https://doi.org/10.7740/KJCS.2020.65.3.231
  35. Thaipong, K., U., Boonprakob, K., Crosby, L., Cisneros-Zevallos and D. Hawkins Byrne. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19:669-675. https://doi.org/10.1016/j.jfca.2006.01.003
  36. Velderrain-Rodriguez, G.R., H. Palafox-Carlos, A. Wall-Medrano, J.F. Ayala-Zavala, C.Y.O. Chen, M. Robles-Sanchez, H. Astiazaran-Garcia, E. Alvarez-Parrilla and G.A. Gonzalez-Aguilar. 2014. Phenolic compounds: their journey after intake. Food Funct. 5:189-197. https://doi.org/10.1039/C3FO60361J
  37. Xu, B. and K.-C. Chang. 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72:S159-S166. https://doi.org/10.1111/j.1750-3841.2006.00260.x