Acknowledgement
이 논문은 2021학년도 순천향대학교 교수 연구년제에 의하여 연구하였음.
References
- Ahmad, M. Z., P. Li, J. Wang, N. U. Rehman, and J. Zhao. 2017. Isoflavone Malonyltransferases GmIMaT1 and GmIMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00735
- Berger, M., C. A. Rasolohery, R. Cazalis, and J. Dayde. 2008. Isoflavone accumulation kinetics in soybean seed cotyledons and hypocotyls: distinct pathways and genetic controls. Crop Sci. 48 : 700-708. https://doi.org/10.2135/cropsci2007.08.0431
- Chen, H., P. Seguin, S. Jabaji, and W. Liu. 2011. Spatial distribution of isoflavones and isoflavone-related gene expression in high-and low-isoflavone soybean cultivars. Can. J. Plant Sci. 91 : 697-705. https://doi.org/10.4141/cjps10192
- Chennupati, P., P. Seguin, R. Chamoun, and S. Jabaji. 2012. Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesis. J. Agric. Food Chem. 60 : 12421-12427. https://doi.org/10.1021/jf3036319
- Chu, S., J. Wang, Y. Zhu, S. Liu, X. Zhou, H. Zhang, C. Wang, W. Yang, Z. Tian, H. Cheng, and D. Yu. 2017. An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLOS Genetics.https://doi.org/10.1371/journal.pgen.1006770
- Devi, M. K. A, G. Kumar, and P. Giridhar. 2020. Effect of biotic and abiotic elicitors on isoflavone biosynthesis during seed development and in suspension cultures of soybean (Glycine max L.). 3 Biotech. https://doi.org/10.1007/s13205-020-2065-1
- Gupta, O. P., A. Dahuja, A. Sachdev, P. K. Jain, S. Kumari, T. Vinutha, and S. Praveen. 2018. Cytosine methylation of isoflavone synthase gene in the genic region positively regulates its expression and isoflavone biosynthesis in soybean seeds. DNA and Cell Biology. https://doi.org/10.1089/dna.2018.4584
- Gupta, O. P., D. Nigam, A. Dahuja, S. Kumar, T. Vinutha1, A. Sachdev, and S. Praveen. 2017. Regulation of isoflavone biosynthesis by miRNAs in two contrasting soybean genotypes at different seed developmental stages. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00567
- Gutierrez-Gonzalez, J. J., S. K. Guttikonda, L. Tran, D. L. Aldrich, R. Zhong, O. Yu, H.T. Nguyen, and D. A. Sleper. 2010a. Differential expression of isoflavone biosynthetic genes in goybean during water deficits. Plant and Cell Physiology 51(6) : 936-948. https://doi.org/10.1093/pcp/pcq065
- Gutierrez-Gonzalez, J. J., X. Wu, J. D. Gillman, J. D. Lee, R. Zhong, O. Yu, G. Shannon, M. Ellersieck, H. T. Nguyen, and D. A. Sleper. 2010b. Research article intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biology. http://www.biomedcentral.com/1471-2229/10/105
- Hu, R., C. Fan, H. Li, Q. Zhang, and Y. Fu. 2009. Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Molecular Biology. https://doi.org/10.1186/471-2199-10-93
- Jia, Y., Y. Ma, P. Zou, G. Cheng, J. Zhou, and S. Cai. 2019. Effects of different oligochitosans on isoflavone metabolites, antioxidant activity, and isoflavone biosynthetic genes in soybean (Glycine max) seeds during germination. J. Agric. Food Chem. 67 : 4652-4661. https://doi.org/10.1021/acs.jafc.8b07300
- Kim, D. G., J. I. Lyu, Y. J. Lim, J. M. Kim, N. N. Hung, S. H. Eom, S. H. Kim, J. B. Kim, C. H. Bae, and S. J. Kwon. 2021. Differential gene expression associated with altered isoflavone and fatty acid contents in soybean mutant diversity pool. Plants. https://doi.org/10.3390/plants10061037
- Lee, J. W., Y. J. Yi, J. H. Lee, M. S. Jo, D. J. Choi, M. H. Ma, H. S. Kim, D. O. Kim, H. T. Yun, and Y. H. Kim. 2018. Quantification of isoflavone malonylglucosides in soybean seed during germination. Korean J. Crop Sci. 63(3) : 239-247. https://doi.org/10.7740/KJCS.2018.63.3.239
- Lim, Y. J., H. Y. Jeong, C. S. Gil, S. J. Kwon, J. K. Na, C. H. Lee, and S. H. Eom. 2020. Isoflavone accumulation and the metabolic gene expression in response to persistent UV-B irradiation in soybean sprouts. Food Chemistry. https://doi.org/10.1016/j.foodchem.2019.125376
- Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and 2-△△Ct method. Methods 25 : 402-408. https://doi.org/10.1006/meth.2001.1262
- Miladinovic, J., V. Dordevic, S. Balesevic-Tubic, K. Petrovic, M. Ceran, J. Cvejic, M. Bursac, and D. Miladinovic. 2019. Increase of isoflavones in the aglycone form in soybeans by targeted crossings of cultivated breeding material. Scientific Reports. https://doi.org/10.1038/s41598-019-46817-1.
- Pei, R., J. Zhang, L. Tian, S. Zhang, F. Han, S. Yan, L. Wang, B. Li, and J. Sun. 2018. Identification of novel QTL associated with soybean isoflavone content. The Crop Journal 6(3) : 244-252. https://doi.org/10.1016/j.cj.2017.10.004
- Wan, Q., S. Chen, Z. Shan, Z. Yang, L. Chen, C. Zhang, S. Yuan, Q. Hap, X. Zhang, D. Qiu, H. Chen, and X. Zhou. 2017. Stability evaluation of reference genes for gene expression analysis by RT-qPCR in soybean under different conditions. PLOS ONE. https://doi.org/10.1371/journal.pone.0189405
- Wu, D., D. Li, X. Zhao, Y. Zhan, W. Teng, L. Qiu, H. Zheng, W. Li, and Y. Han. 2020. Identification of a candidate gene associated with isoflavone content in soybean seeds using genome-wide association and linkage mapping. The Plant Journal 104 : 950-963. https://doi.org/10.1111/tpj.14972
- Yuk, H. J., Y. H. Song, M. J. Curtis-Long, D. W. Kim, S. G. Woo, Y. B. Lee, Z. Uddin, C. Y. Kim, and K. H. Park. 2016. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves. J. Agric. Food Chem. 64 : 7315-7324. https://doi.org/10.1021/acs.jafc.6b02543