DOI QR코드

DOI QR Code

Antioxidant Properties of 7 Domestic Essential Oils and Identification of Physiologically Active Components of Essential Oils against Candida albicans

식물정유 7종의 항산화능 분석 및 Candida albicans 생장 억제 정유의 생리활성 성분 구명

  • LEE, Sang-Youn (Department of Agriculture, Forestry, and Bioresources, Seoul National University) ;
  • LEE, Da-Song (Department of Agriculture, Forestry, and Bioresources, Seoul National University) ;
  • CHO, Seong-Min (Department of Forest Sciences, Seoul National University) ;
  • KIM, Jong-Chan (Department of Agriculture, Forestry, and Bioresources, Seoul National University) ;
  • PARK, Mi-Jin (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ;
  • CHOI, In-Gyu (Department of Agriculture, Forestry, and Bioresources, Seoul National University)
  • Received : 2020.11.10
  • Accepted : 2020.12.16
  • Published : 2021.01.25

Abstract

In this study, we selected two essential oils, Citrus unshiu and Cinnamomum cassia with superior antioxidant effects from the essential oils of 7 wild plants in South Korea and examined their antimicrobial activity against Candida albicans, which causes dermatitis to identify the antimicrobial components in the essential oils. As a result of measuring DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, SC50 value of the Citrus unshiu essential oil was 0.010 mg/mL, while for the Cinnamomum cassia essential oil, SC50 value was 0.09 mg/mL. In addition, when ABTS (2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity was measured, SC50 value of the Citrus unshiu essential oil was 0.09 mg/mL, while for the Cinnamomum cassia essential oil, it was 0.06 mg/mL, exhibiting high antioxidant activity. For the minimum inhibitory concentration (MIC), the essential oil of Cinnamomum cassia was 1.25 mg/mL and that of Citrus unshiu was 5 mg/mL, demonstrating a high antimicrobial activity of the Cinnamomum cassia essential oil. Through the thin layer chromatography (TLC) bioassay, we assessed the antimicrobial activity against C. albicans according to the fraction components of the two essential oils. Also, by using preparative TLC (prep. TLC), we obtained the active fractions, and by performing GC/MS analysis of the components with the same Rf value, we identified the antimicrobial-active components. As a result, the main components having antioxidant and antimicrobial activities were cinnamyl acetate, eucalyptol, linalool, and citral of the Cinnamomum cassia essential oil and linalool from the Citrus unshiu essential oil. Also, based on the analysis of the fractional components that showed antioxidant and antimicrobial activities in both of the two essential oils, it was found that linalool has antioxidant activity, while cinnamyl acetate, eucalyptol, citral, and geranyl acetate have antioxidant and antimicrobial activities.

본 연구에서는 국내 자생식물 7종의 정유 중 우수한 항산화 효과가 있는 온주밀감, 육계나무 정유 2종을 선별하였고, 피부염을 유발하는 Candida albicans에 대한 항미생물 활성 평가를 통해 식물정유의 항미생물 활성성분을 구명하고자 하였다. 1,1-diphenyl-2-picrylhydrazyl (DPPH) 라디칼 소거활성 측정 결과 SC50값이 온주밀감 정유 0.010 mg/mL, 육계나무 정유 0.09 mg/mL을 나타냈으며, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) 라디칼 소거활성 측정 결과 온주밀감 정유 0.09 mg/mL, 육계나무 정유 0.06 mg/mL로 높은 항산화 활성을 나타냈다. Minimum Inhibitory Concentration는 육계나무 정유 1.25 mg/mL, 온주밀감 정유 5 mg/mL 값으로 육계나무 정유에서 뛰어난 항미생물 활성이 나타났다. Thin layer chromatography (TLC) bioassay를 통해 2종 정유의 성분 분획에 따른 C. albicans에 대한 항미생물 활성을 평가하였고, preparative TLC (prep. TLC)를 통해 활성분획을 획득하고, 동일 Rf값을 가지는 성분들에 대해서 GC/MS 분석을 수행하여 항미생물 활성성분을 구명하였다. 그 결과 항산화 및 항미생물 활성을 나타내는 주성분은 각각 육계나무 정유의 경우 cinnamyl acetate, eucalyptol, linalool, citral 온주밀감 정유의 경우 linalool이었다. 2종 정유에 공통적으로 항산화 및 항미생물 활성을 나타낸 분획부 성분분석 결과 linalool은 항산화, cinnamyl acetate, eucalyptol, citral, geranyl acetate은 항산화와 항미생물 능력이 있다고 사료된다.

Keywords

Acknowledgement

This research was supported by the Forest Science and Technology Development Project (FP0900-2016-01) of the National Institute of Forest Science.

References

  1. Ahn, C., Park, M.J., Kim, J.W., Yang, J., Lee, S.S., Jeung, E.B. 2018. Cytotoxic evaluation of plant essential oils in human skin and lung cells. Journal of the Korean Wood Science and Technology 46(2): 166-177. https://doi.org/10.5658/WOOD.2018.46.2.166
  2. Blois, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181(4617): 1199-1200. https://doi.org/10.1038/1811199a0
  3. Camini, F.C., da Silva Caetano, C.C., Almeida, L.T., de Brito Magalhaes, C.L. 2017. Implications of oxidative stress on viral pathogenesis. Archives of Virology 162(4): 907-917. https://doi.org/10.1007/s00705-016-3187-y
  4. Carson, C.F., Riley, T.V. 1995. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. Journal of Applied Bacteriology 78(3): 264-269. https://doi.org/10.1111/j.1365-2672.1995.tb05025.x
  5. Chahomchuen, T., Insuan, O., Insuan, W. 2020. Chemical profile of leaf essential oils from four Eucalyptus species from Thailand and their biological activities. Microchemical Journal 158: 105248. https://doi.org/10.1016/j.microc.2020.105248
  6. Chen, C., Pearson, A.M., Gray, J.I. 1992. Effects of synthetic antioxidants (BHA, BHT and PG) on the mutagenicity of IQ-like compounds. Food Chemistry 43(3): 177-183. https://doi.org/10.1016/0308-8146(92)90170-7
  7. Choi, S.H., Park, K.W., Sohn, Y.G., An, J.Y., Lee, J.J. 2010. Selection of Essential Oils Inhibiting Germination and Initial Growth of Rapeseed (Brassica napus L.). The Korean Journal of Weed Science 30(3): 199-205. https://doi.org/10.5660/KJWS.2010.30.3.199
  8. De Lima Carvalho, P.C., de Sa, N.P., Lacerda, I.C.A., Pataro, C., Rosa, L.H., Alves, R.S., Johann, S. 2018. Anti-Candida activity of cinnamon inhibition of virulence factors of clinical strains of Candida albicans by essential oil of Cinnamomum zeylanicum. Philippine Society for Microbiology 3(1): 4-12.
  9. Del Rosso, J., Friedlander, S.F. 2005. Corticosteroids: Options in the era of steroid-sparing therapy. Journal of the American Academy of Dermatology 53(1 SUPPL.): 50-58.
  10. Denning, D.W., Venkateswarlu, K., Oakley, K.L., Anderson, M.J., Manning, N.J., Stevens, D.A., Kelly, S.L. 1997. Itraconazole resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy 41(6): 1364-1368. https://doi.org/10.1128/aac.41.6.1364
  11. Goncalves, M.J., Cruz, M.T., Tavares, A.C., Cavaleiro, C., Lopes, M.C., Canhoto, J., Salgueiro, L. 2012. Composition and biological activity of the essential oil from Thapsia minor, a new source of geranyl acetate. Industrial Crops and Products 35(1): 166-171. https://doi.org/10.1016/j.indcrop.2011.06.030
  12. Gutierrez, J., Barry-Ryan, C., Bourke, P. 2008. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. International Journal of Food Microbiology 124(1): 91-97. https://doi.org/10.1016/j.ijfoodmicro.2008.02.028
  13. Ham, Y., Yang, J., Choi, W.S., Ahn, B.J., Park, M.J. 2020. Antibacterial Activity of Essential Oils from Pinaceae Leaves Against Fish Pathogens. Journal of the Korean Wood Science and Technology 48(4): 527-547. https://doi.org/10.5658/WOOD.2020.48.4.527
  14. Herman, A., Tambor, K., Herman, A. 2016. Linalool affects the antimicrobial efficacy of essential oils. Current Microbiology 72(2): 165-172. https://doi.org/10.1007/s00284-015-0933-4
  15. Hsu, C.C., Lai, W.L., Chuang, K.C., Lee, M.H., Tsai, Y.C. 2013. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Medical Mycology 51(5): 473-482. https://doi.org/10.3109/13693786.2012.743051
  16. Jeong, M.J., Yang, J., Choi, W.S., Kim, J.W., Kim, S.J., Park, M.J. 2017. Chemical compositions and antioxidant activities of essential oil extracted from Neolitsea aciculata (Blume) Koidz leaves. Journal of the Korean Wood Science and Technology 45(1): 96-106. https://doi.org/10.5658/WOOD.2017.45.1.96
  17. Kang, D.-R., Shim, K.-S., Choe, H.-S., Na, C.-S. 2017. Antioxidant, Antimicrobial Acitivities and Cytotoxicity of Hot Water Extracts of Major Herbs in Korea. Korean Journal of Organic Agricultue 25(4): 821-830. https://doi.org/10.11625/KJOA.2017.25.4.821
  18. Kang, S.K., Auh, Q., Chun, Y.H., Hong, J.P. 2010. Effect of Chamaecyparis obtusa tree phytoncide on Candida albicans. Journal of Oral Medicine and Pain 35(1): 19-29.
  19. Kang, Y.H., Park, Y.K., Oh, S.R., Moon, K.D. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Korean Journal of Food Science and Technology 27(6): 978-984.
  20. Karlovic, Z., Anic, I., Miletic, I., Prpic-Mehicic, G., Pezelj-Ribaric, S., Marsan, T. 2000. Antibacterial Activity of Halothane, Eucalyptol and Orange Oil. Acta Stomatologica Croatica 34(3): 307-309.
  21. Kim, J.S. 2013. Preliminary evaluation for comparative antioxidant activity in the water and ethanol extracts of dried citrus fruit (Citrus unshiu) peel using chemical and biochemical in vitro assays. Food and Nutrition Sciences 4(2): 177-188. https://doi.org/10.4236/fns.2013.42025
  22. Kim, S.H., Lee, S.Y. 2013. Evaluation on Anti-Dermatophyte Effect of Larix (kaempferi) Essential Oil on the Morphological Changes of Eermatophyte Fungal Hyphae. Journal of the Korean Wood Science and Technology 41(3): 247-257. https://doi.org/10.5658/WOOD.2013.41.3.247
  23. Kim, S.H., Lee, S.Y., Hong, C.Y., Jeong, H.S., Park, M.J., Choi, I.G. 2012. Antifungal activity of essential oil from Cryptomeria japonica against dermatophytic fungi. Journal of the Korean Wood Science and Technology 40(4): 276-286. https://doi.org/10.5658/WOOD.2012.40.4.276
  24. Koehn, F.E., Carter, G.T. 2005. The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery 4(3): 206-220. https://doi.org/10.1038/nrd1657
  25. Konan, K.V., Le Tien, C., Mateescu, M.A. 2016. Electrolysis-induced fast activation of the ABTS reagent for an antioxidant capacity assay. Analytical Methods 8(28): 5638-5644. https://doi.org/10.1039/C6AY01088A
  26. Lee, H.O., Baek S.H., Han, D.M. 2001. Antimicrobial effects of chamaecyparis obtusa Essential oil. Microbiol Biotechnol 29(4): 253-257.
  27. Lee, H.-K., Lee, H.-S. 2016. Insecticidal Activities of 10 Plant Essential Oils against Plodia interpunctella and Tribolium castaneum. The Korean Journal of Pesticide Science 20(4): 355-360. https://doi.org/10.7585/kjps.2016.20.4.355
  28. Lee, J.H., Lee, B.K., Kim, J.H., Lee, S.H., Hong, S.K. 2009. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. Journal of Microbiology and Biotechnology 19(4): 391-396. https://doi.org/10.4014/jmb.0803.191
  29. Lee, Y.H. 2003. Risk factors and clinical outcome for nosocomial candidemia in patients of intensive care unit. Master. Thesis, Ewha Womans University, Korea.
  30. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., Abete, P. 2018. Oxidative stress, aging, and diseases. Clinical Interventions in Aging 13: 757-772. https://doi.org/10.2147/CIA.S158513
  31. Luis, A., Sousa, S., Wackerlig, J., Dobusch, D., Duarte, A.P., Pereira, L., Domingues, F. 2019. Star anise (Illicium verum Hook. f.) essential oil: Antioxidant properties and antibacterial activity against Acinetobacter baumannii. Flavour and Fragrance Journal 34(4): 260-270. https://doi.org/10.1002/ffj.3498
  32. Marples, mary J., A., D. 1968. The oral and cutaneous distribution of Candida albicans and other yeasts in rarotonga. Cook Islands 62(2): 256-262.
  33. Mattew, J.S., Omar, P.S., Jerome, L.S. 1993. Systemic drugs in the treatment of dermatophytosis. International Journal of Dermatology 32(1): 16-21. https://doi.org/10.1111/j.1365-4362.1993.tb00952.x
  34. Mayer, F.L., Wilson, D., Hube, B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4(2): 119-128. https://doi.org/10.4161/viru.22913
  35. Mimica-Dukic, N., Bozin, B., Sokovic, M., Mihajlovic, B., Matavulj, M. 2003. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Medica 69(5): 413-419. https://doi.org/10.1055/s-2003-39704
  36. Min, B.G., Lyu, K.Y. 1992. Clinical effect of topical ketoconazole in seborrheic dermatitis of scaip. The Korean Society for Aesthetics and Cosmetology 30(5): 625-632.
  37. Mukherjee, P.K., Leidich, S.D., Isham, N., Leitner, I., Ryder, N.S., Ghannoum, M.A. 2003. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrobial Agents and Chemotherapy 47(1): 82-86. https://doi.org/10.1128/AAC.47.1.82-86.2003
  38. Na, S.Y., Oh, S.J., Kim, H.J., Kim, J.M., Ju, Y.S., Jeong, S.I. 2006. Chemical Composition and Antimicrobial Activity of the Essential Oil of Cryptomeria japonica. Journal of Korean Oriental Medical Ophthalmology & Otolaryngology & Dermatology 19(3): 68-74.
  39. Ntyonga-Pono, Marie. P. 2020. COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment?. The Pan African Medical Journal 35(Supp 2): 12.
  40. Park, K.D., Bae, J.E. 2018. Systematic Review of Herbal Medicine Fumigation Treatment for Mycotic Vaginitis (Candida Vaginitis). The Journal of Oriental Gynecology 31(3): 20-32.
  41. Peterhans, E. 1979. Sendai virus stimulates chemiluminescence in mouse spleen cells. Biochemical and Biophysical Research Communications 91(1): 383-392. https://doi.org/10.1016/0006-291X(79)90630-2
  42. Ravine, T.J., Bru, S.E., Brewer, P., Tyler, S. 2020. Persistence of Aspergillus fumigatus Spores Seeded Onto Thermoplastic Immobilization Devices. Radiation Therapist 29(1): 16-27.
  43. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9-10): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  44. Saddiq, A.A., Khayyat, S.A. 2010. Chemical and antimicrobial studies of monoterpene: Citral. Pesticide Biochemistry and Physiology 98(1): 89-93. https://doi.org/10.1016/j.pestbp.2010.05.004
  45. Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y.S.R., De, B. 2010. Free radicals, antioxidants, disease and phytomedicines:current status and future prospect. Phytotherapy Research 20(7): 546-551. https://doi.org/10.1002/ptr.1897
  46. Seo, K.A., Li, S.H. 2015. A Study on the Anti-bacterial Effect and Dandruff Scalp Emprovement of Malassezia furfur of Chamaecyparis obtusa. Asian Journal of Beauty & Cosmetology 13(3): 285-293.
  47. Seshadri, V.D., Balasubramanian, B., Al-Dhabi, N.A., Esmail, G.A., Arasu, M.V. 2020. Essential oils of Cinnamomum loureirii and Evolvulus alsinoides protect guava fruits from spoilage bacteria, fungi and insect (Pseudococcus longispinus). Industrial Crops and Products 154: 112629. https://doi.org/10.1016/j.indcrop.2020.112629
  48. Sharma, A., Rajendran, S., Srivastava, A., Sharma, S., Kundu, B. 2017. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. Journal of Bioscience and Bioengineering 123(3): 308-313. https://doi.org/10.1016/j.jbiosc.2016.09.011
  49. Sharma, O.P., Bhat, T.K. 2009. DPPH antioxidant assay revisited. Food Chemistry 113(4): 1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008
  50. Sies, H. 2003. biochemistry of oxidative stress Angewandte Chemie Internation Edtin in English 25(12): 309-311.
  51. Silva, C.D.B.D., Guterres, S.S., Weisheimer, V., Schapoval, E.E. 2008. Antifungal activity of the lemongrass oil and citral against Candida spp. Brazilian Journal of Infectious Diseases 12(1): 63-66.
  52. Sivropoulou, A., Papanikolaou, E., Nikolaou, C., Kokkini, S., Lanaras, T., Arsenakis, M. 1996. Antimicrobial and cytotoxic activities of Origanum essential oils. Journal of Agricultural and Food Chemistry 44(5): 1202-1205. https://doi.org/10.1021/jf950540t
  53. Tampieri, M.P., Galuppi, R., Macchioni, F., Carelle, M.S., Falcioni, L., Cioni, P.L., Morelli, I. 2005. The inhibition of Candida albicans by selected essential oils and their major components. Mycopathologia, 159(3): 339-345. https://doi.org/10.1007/s11046-003-4790-5
  54. Trick, W.E., Fridkin, S.K., Edwards, J.R., Hajjeh, R.A., Gaynes, R.P. 2002. Secular trend of hospital-acquired Candidemia among intensive care unit patients in the United States during 1989-1999. Clinical Infectious Diseases 35(5): 627-630. https://doi.org/10.1086/342300
  55. Unlu, M., Ergene, E., Unlu, G.V., Zeytinoglu, H.S., Vural, N. 2010. Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food and Chemical Toxicology 48(11): 3274-3280. https://doi.org/10.1016/j.fct.2010.09.001
  56. Woo, J.H., Lee, S.Y., Kim, J.H., Park, K.W. 2013. Antioxidant and antimicrobial activity of peppermint oil products. Journal of Korea Society for Plants People and Environment 16(6): 361-367. https://doi.org/10.11628/ksppe.2013.16.6.361
  57. Xiao Nan, Y., Sun Chul, K. 2013. Chemical composition, antioxidant and antibacterial activities of essential oil from Korean Citrus unshiu peel. Journal of Agricultural Chemistry and Environment 2(3): 42-49. https://doi.org/10.4236/jacen.2013.23007
  58. Yaeesh, S., Jamal, Q., Khan, A. U., Gilani, A. H. 2006. Studies on hepatoprotective, antispasmodic and calcium antagonist activities of the aqueous-methanol extract of Achillea millefolium. Phytotherapy Research 20(7): 546-551. https://doi.org/10.1002/ptr.1897
  59. Yang, C.H., Li, R.X., Chuang, L.Y. 2012. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules, 17(6): 7294-7304. https://doi.org/10.3390/molecules17067294
  60. Yang, J.K., Choi, M.S., Seo, W.T., Rinker, D.L., Han, S.W., Cheong, G.W. 2007. Chemical composition and antimicrobial activity of Chamaecyparis obtusa leaf essential oil. Fitoterapia 78(2): 149-152. https://doi.org/10.1016/j.fitote.2006.09.026
  61. Yang, J., Choi, W.S., Kim, J.W., Lee, S.S., Park, M.J. 2019. Anti-Inflammatory effect of essential oils extracted from wood of four coniferous tree species. Journal of the Korean Wood Science and Technology 47(6): 674-691. https://doi.org/10.5658/wood.2019.47.6.674
  62. Zhang, Z., Rong, L., Li, Y.P. 2019. Flaviviridae viruses and oxidative stress: Implications for viral pathogenesis. Oxidative Medicine and Cellular Longevity 2019: 1409582.