DOI QR코드

DOI QR Code

Applicability Test of STPS for HEC-RAS-based Turbidity Prediction Model in the Nagdonggang

HEC-RAS에 기반한 탁도예측모형 STPS의 낙동강에 대한 적용성 검토

  • Lee, Namjoo (Dept. of Civil Eng., Kyungsung Univ.) ;
  • Choi, Seohye (R&D Division, Korea Institute of Hydrological Survey) ;
  • Kim, Chang-Sung (R&D Division, Korea Institute of Hydrological Survey)
  • 이남주 (경성대학교 건설환경공학부) ;
  • 최서혜 (한국수자원조사기술원 연구사업실) ;
  • 김창성 (한국수자원조사기술원 연구사업실)
  • Received : 2021.11.24
  • Accepted : 2021.12.16
  • Published : 2021.12.31

Abstract

A turbidity current in a river and a lake occurs due to diverse nutrient loading including suspended sediment in sediment runoff, which affects water withdrawal and river environments. We developed one dimensional time-variant numerical model based on Python for the Nagdonggang mainstream. We examined the numerical stability and the applicability of the model by performing the simulation of quasi-steady flow in non-flooding for three cases, which are different according to the point and the amount of turbidity inflows in the Nagdonggang upstream and a tributary. The result was reasonable in the respect of the conservation of matter. The model will facilitate to simulate a large river if we can secure the data of turbidity variations in a target river reach or measured points in a field.

하천이나 호소에서 발생하는 탁도 흐름은 유역유사유출 과정에서 부유사와 같이 다양한 영양물질이 혼합된 물질 순환의 결과물로 취수나 하천환경 등에 영향을 미치는 원인이 된다. 본 연구는 낙동강 본류를 대상으로 일차원 비정상(time-variant) 수치모형의 Python 코드를 개발하였다. 개발모형의 수치 안정성을 검토하였으며 모형의 적용성을 시험하기 위해 비홍수기의 준정상류 흐름에 대하여 낙동강 본류의 상류 탁도와 지류의 탁도 변화가 반영된 3가지 모의조건으로 적용하였다. 적용 결과, 각 모의 조건에 대해 물질 보존 관점에서 합리적인 수치해석 결과를 얻을 수 있었으며 향후 현장에서 실측된 지점 또는 하도 구간 내의 탁도 유동 자료을 확보할 수 있다면 대하천에 적용 가능한 탁도 간략 예측모형으로 활용할 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원 지원으로 수행되었음 (과제번호 21DPIW-C153746-03).

References

  1. Chung, S.W., Oh, J.K. and Ko, I.H. 2005. Characteristics of Reservoir Inflow Water Temperature and Turbidity and Prediction Models Development. Joint Sprint Conference of KSWW and KSWE, 645-648. (in Korean)
  2. Jun, H., Jung, K., Kim, K., Lee, H., and Park, J. 2004. A Comparative Study on Transport and Behavior of Turbid Water in Large Dam Reservoirs. Joint Autumn Conference of KSWW and KSWE, 439-444. (in Korean)
  3. Hoffmann, K.A. and Chiang, S.T. 2000. Computational fluid dynamics (4th ed.), volume 1. Engineering Education Syspem.
  4. Kim, Y.-H., Kim, B.-C., Choi, K.-S. and Seo, D.-I. 2001. Modeling of Thermal Stratification and Transport of Density Flow in Soyang Reservoir Using the 2-D Hydrodynamic Water Quality Model, CE-QUAL-W2. J. KSWW. 12: 96-105. (in Korean)
  5. K-Water. 2004a. Report on establishment of plan to reduce turbidity in Imha Dam. (in Korean)
  6. K-Water Institute. 2004b. A study on the mixed behavior of the Imha Lake Turbidity Formation. K-Water. (in Korean)
  7. Lee, J.B., Kim, H.j., Kim, J.H. and Wie, G.J. 2021. Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River. J. of Korean Society of Surveying, 39(4), 235-43. (in Korean)
  8. Lee, N.J. and Heo, S.N. 2007. Development of STPS for Turbidity Prediction along the Nakdong River Due to Very Fine Soil. J. KSWST. 15(3), 11-21. (in Korean)
  9. Lee, S., Seo, D. and Chung, S. 2003. Modeling of Thermal Stratification in Daecheong Reservoir using 2-D Hydrodynamic Water Quality Model,CE-QUAL-W2. Spring Conference of KSEE. 676-678. (in Korean)
  10. Ministry of works. 1993. Master plan for development of Nagdonggang (Revision III) (in Korean)
  11. Park, O.-R. and Park, S.-S. 2002. A time variable modeling study of vertical temperature profiles in the Okjung lake. Korean Journal of Limnology, 35: 79-91. (in Korean)
  12. Ryu, K. and Lee, N. 2020. Numerical Analysis Using Python. CIR. ISBN 9791156108627(1156108624). (in Korean)