DOI QR코드

DOI QR Code

Effect of Chronic Toxicity by Waste Microplastics (PET) on Daphnia magna

폐 미세플라스틱(PET)의 물벼룩 만성독성 연구

  • Han, Bomi (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Park, GeonU (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Yoo, Seungwoo (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Kim, Changhae (Department of Environmental Science & Ecological Engineering, Korea University) ;
  • Jung, Jinho (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Na, Joorim (O-jeong-Eco-Resilience Institute)
  • 한보미 (고려대학교 환경생태공학부) ;
  • 박건우 (고려대학교 환경생태공학부) ;
  • 유승우 (고려대학교 환경생태공학부) ;
  • 김창해 (고려대학교 일반대학원 환경생태공학과) ;
  • 정진호 (고려대학교 환경생태공학부) ;
  • 나주림 (고려대학교 오정리질리언스연구원)
  • Received : 2021.12.03
  • Accepted : 2021.12.24
  • Published : 2021.12.31

Abstract

Commercially used disposable cups undergo fragmentation in the environment and become microplastics (MPs). These MPs can be ingested by aquatic organisms and cause a range of adverse effects. We assessed the acute and chronic toxicity of disposable cup-derived MP fragments in Daphnia magna. MP fragments were identified as a polyethylene terephthalate (PET) fragment with a size of 33.18 ± 7.76 ㎛. The presence of three additives including 1- Propanone. 1-phenyl-3-[2-(phenylmethoxy)phenyl]-, p-Xylene and ethylbenzene was analyzed from MP fragments. The 48 h acute toxicity revealed that 20 % of immobilization and mortality were found at the highest concentration of PET MP (200 mg L-1). The 21 d chronic toxicity revealed that PET MP fragments significantly (p < 0.05) more reduced survival rate (31 %), total offspring (52 %) in D. magna compared with control group. The developmental abnormality of offspring (3.5%) by PET MP fragments was significantly (p < 0.05) higher than control groups (0.3%). These results are possibly induced by gut blocking by ingestion of MP fragments and their longer retention time. These findings indicate that the fragmentation of disposable cups (PET polymers) into small-sized MP fragments pose a significant ecological risk to aquatic organisms. Further studies are required to elucidate the underlying toxicity mechanisms.

상업에서 사용되는 일회용 컵은 환경으로 유입되어 파편화되어 미세플라스틱 (MP)이 될 수 있다. 또한 MP는 수생 생물에게 섭식 될 수 있으며, 다양한 부작용을 미칠 수 있다. 본 연구는 일회용 컵에서 유래된 MP 조각이 물벼룩에게 미치는 급성 및 만성 독성을 평가했다. MP 조각은 33.18 ±7.76 ㎛ 크기의 PET (Polyethylene terephthalate) MP 조각으로 확인되었으며, 3종류의 첨가제 (1- Propanone. 1-phenyl-3-[2-(phenylmethoxy)phenyl]-, p-Xylene and ethylbenzene)가 함유되어 있는 것을 확인하였다. 48시간 급성 독성은 최고 농도의 PET MP (200 mg L-1)에 노출된 물벼룩에서 20%의 유영저해 및 사망을 발견하였다. 21일 만성 독성은 5 mg L-1의 PET MP 조각에 노출된 D. magna에서 대조군과 비교하여 줄어든 생존율 (31%)과 번식 (52%)을 보여주었다. 더욱이 PET MP는 태어난 개체의 발달 이상을 (3.5%) 대조군 (0.3%)과 비교하여 유의하게 (p < 0.05) 증가시켰다. 이러한 결과는 MP 조각의 섭취에 의한 장 막힘과 더 긴 체류 시간 때문일 수 있다. 본 연구의 결과는 일회용 컵 (PET 폴리머)이 작은 크기의 MP 조각으로 단편화되면 수생 생물에 심각한 생태학적 위험을 제기할 수 있음을 시사하고 있다. 또한 MP 독성 및 첨가제에 대한 근본적인 독성 메커니즘을 확인하기 위해 추가 연구가 수행되어야 한다.

Keywords

Acknowledgement

이 논문은 고려대학교에서 지원된 연구비와 한국연구재단의 지원을 받아 수행된 기초연구사업(No. NRF-2019R1A2C1002890, NRF-2021R1A6A1A10045235)의 일환으로 수행되었습니다. 그리고 본 연구에 사용된 물벼룩을 제공해주신 고려대학교 정진호 교수님께 깊은 감사를 드립니다.

References

  1. 한국기계연구원, 2019. 「플라스틱 폐기물로 인한 생태.. 환경 위해요인 개선」 사전기획연구 보고서
  2. An, D., Na, J., Song, J., Jung, J., 2021. Size-dependent chronic toxicity of fragmented polyethylene microplastics to Daphnia magna. Chemosphere 271, 129591. https://doi.org/10.1016/j.chemosphere.2021.129591
  3. Asensio, C.R., San Andres Moya, M., de la Roja, J.M., and Gomez, M., 2009. Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy. Analytical and Bioanalytical Chemistry 395: 2081-2096. https://doi.org/10.1007/s00216-009-3201-2
  4. Bejgarn, S., MacLeod, M., Bogdal, C. and Breitholtz, M. 2015. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere, 132: 114-119. https://doi.org/10.1016/j.chemosphere.2015.03.010
  5. Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T. and Thompson, R., 2011. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology 45: 9175-9179. https://doi.org/10.1021/es201811s
  6. Castaneda, R.A., Avlijas, S., Simard, M.A. and Ricciardi, A., 2014. Microplastic pollution in St. Lawrence River sediments. Canadian Journal of Fisheries and Aquatic Sciences 71: 1767-1771. https://doi.org/10.1139/cjfas2014-0281
  7. Chang, C.-C., K. Green, S., Luke Williams, C., J. Dauenhauer, P. and Fan, W., 2014. Ultra-selective cycloaddition of dimethylfuran for renewable p -xylene with H-BEA. Green Chemistry 16: 585-588. https://doi.org/10.1039/C3GC40740C
  8. Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C. and 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75: 63-82. https://doi.org/10.1016/j.watres.2015.02.012
  9. Erk, K.A., Rhein, M., Krafcik, M.J. and Ydstie, S., 2015. Demonstrating the Effects of Processing on the Structure and Physical Properties of Plastic Using Disposable PETE Cups. Journal of Chemical Education 92: 1876-1881. https://doi.org/10.1021/acs.jchemed.5b00082
  10. Gall, S.C. and Thompson, R.C., 2015. The impact of debris on marine life. Marine Pollution Bulletin 92: 170-179. https://doi.org/10.1016/j.marpolbul.2014.12.041
  11. Gerdes, Z., Hermann, M., Ogonowski, M., Gorokhova, E., 2019. A novel method for assessing microplastic effect in suspension through mixing test and reference materials. Scientific Reports 9, 10695. https://doi.org/10.1038/s41598-019-47160-1
  12. Hatcher, P.G. and McGillivary, P.A., 1979. Sewage contamination in the New York Bight. Coprostanol as an indicator. Environmental Science & Technology 13: 1225-1229. https://doi.org/10.1021/es60158a015
  13. Heindler, F.M., Alajmi, F., Huerlimann, R., Zeng, C., Newman, S.J., Vamvounis, G. and van Herwerden, L., 2017. Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris. Ecotoxicology and Environmental Safety 141: 298-305. https://doi.org/10.1016/j.ecoenv.2017.03.029
  14. Imhof, H.K., Ivleva, N.P., Schmid, J., Niessner, R. and Laforsch, C., 2013. Contamination of beach sediments of a subalpine lake with microplastic particles. Current Biology 23: R867-R868. https://doi.org/10.1016/j.cub.2013.09.001
  15. ISO 6341, 2012. INTERNATIONAL STANDARD ISO inhibition of the mobility of Daphnia.
  16. Ivar do Sul, J.A. and Costa, M.F., 2007. Marine debris review for Latin America and the Wider Caribbean Region: From the 1970s until now, and where do we go from here? Marine Pollution Bulletin 54: 1087-1104. https://doi.org/10.1016/j.marpolbul.2007.05.004
  17. Jakubowska, M., Bialowas, M., Stankeviciute, M., Chomiczewska, A., Pazusiene, J., Jonko-Sobus, K., ... and Urban-Malinga, B. (2020). Effects of chronic exposure to microplastics of different polymer types on early life stages of sea trout Salmo trutta. Science of the Total Environment 740: 139922. https://doi.org/10.1016/j.scitotenv.2020.139922
  18. Jemec, A., Horvat, P., Kunej, U., Bele, M. and Krzan, A., 2016. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution 219: 201-209. https://doi.org/10.1016/j.envpol.2016.10.037
  19. Jung, M.R., Horgen, F.D., Orski, S.V., Rodriguez C., V., Beers, K.L., Balazs, G.H., Jones, T.T., Work, T.M., Brignac, K.C., Royer, S.-J., Hyrenbach, K.D., Jensen, B.A. and Lynch, J.M., 2018. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin 127: 704-716. https://doi.org/10.1016/j.marpolbul.2017.12.061
  20. Lambert, S., Scherer, C., Wagner, M., 2017. Ecotoxicity testing of microplastics: Considering the heterogeneity of physicochemical properties: Ecotoxicity Testing of Microplastics. Integrated Environmental Assessment and Management 13: 470-475. https://doi.org/10.1002/ieam.1901
  21. Lechner, A., Keckeis, H., Lumesberger-Loisl, F., Zens, B., Krusch, R., Tritthart, M., Glas, M., Schludermann, E., 2014. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe's second largest river. Environmental Pollution 188: 177-181. https://doi.org/10.1016/j.envpol.2014.02.006
  22. Lithner, D., Damberg, J., Dave, G. and Larsson, A. 2009. Leachates from plastic consumer products-screening for toxicity with Daphnia magna. Chemosphere 74(9): 1195-1200. https://doi.org/10.1016/j.chemosphere.2008.11.022
  23. Murphy, F. and Quinn, B., 2018. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction. Environmental Pollution 234: 487-494. https://doi.org/10.1016/j.envpol.2017.11.029
  24. Na, J., Song, J., Achar, J.C. and Jung, J., 2021. Synergistic effect of microplastic fragments and benzophenone-3 additives on lethal and sublethal Daphnia magna toxicity. Journal of Hazardous Materials 402, 123845. https://doi.org/10.1016/j.jhazmat.2020.123845
  25. Neuparth, T., Capela, R., Pereira, S.P.P., Moreira, S.M., Santos, M.M., Reis-Henriques, M.A., 2014. Toxicity Effects of Hazardous and Noxious Substances (HNS) to Marine Organisms: Acute and Chronic Toxicity of p-Xylene to the Amphipod Gammarus locusta. Journal of Toxicology and Environmental Health, Part A 77: 1210-1221. https://doi.org/10.1080/15287394.2014.921867
  26. OECD, 2012. Test No. 211: Daphnia magna Reproduction Test.
  27. OECD, 2004. Test No. 202: Daphnia sp. Acute Immobilisation Test.
  28. Ogonowski, M., Schur, C., Jarsen, A. and Gorokhova, E., 2016. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna. PLoS ONE 11, e0155063. https://doi.org/10.1371/journal.pone.0155063
  29. Peda, C., Caccamo, L., Fossi, M.C., Gai, F., Andaloro, F., Genovese, L., Perdichizzi, A., Romeo, T., Maricchiolo, G., 2016. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: Preliminary results. Environmental Pollution 212: 251-256. https://doi.org/10.1016/j.envpol.2016.01.083
  30. PlstcisEurope, 2019. Plastics - the Facts 2019-An Analysis of European Plastics Production, Demand and Waste Data. https://www.plasticseurope.org/application/.
  31. Portugal, S.G.M., Oses, C.A.B., Thiago, M.G.R. and Branco, C.W.C., 2021. Uptake of Microplastics by a Tropical Freshwater Cladocera Revealed by Polyethylene Terephthalate Fluorescence. Water, Air, & Soil Pollution 232, 337. https://doi.org/10.1007/s11270-021-05291-0
  32. Raghavendrachar, P., Ramachandran, S., 1992. Liquid-phase catalytic oxidation of p-xylene. Ind. Industrial & engineering chemistry research 31: 453-462. https://doi.org/10.1021/ie00002a001
  33. UNEP, 2005. Marine litter, an analytical overview. United Nations Environment Programme, Nairobi.
  34. Sait, S.T., Sorensen, L., Kubowicz, S., Vike-Jonas, K., Gonzalez, S.V., Asimakopoulos, A.G. and Booth, A.M. 2021. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content. Environmental Pollution 268: 115745. https://doi.org/10.1016/j.envpol.2020.115745
  35. Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M.B. and Janssen, C.R., 2015. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environmental Pollution 199: 10-17. https://doi.org/10.1016/j.envpol.2015.01.008
  36. Wright, S.L., Thompson, R.C. and Galloway, T.S., 2013. The physical impacts of microplastics on marine organisms: A review. Environmental Pollution 178: 483-492. https://doi.org/10.1016/j.envpol.2013.02.031