DOI QR코드

DOI QR Code

4차선급 신형식 방음터널 거더 제안 및 구조적 성능평가

Proposal of a New Type of 4-Lane Soundproof Tunnel Girder and Structural Performance Evaluation

  • 고원희 (고려대학교 건축사회환경공학과) ;
  • 김민재 (고려대학교 건축사회환경공학과) ;
  • 마천 (고려대학교 건축사회환경공학과) ;
  • 강덕만 (동아이엔지(주)) ;
  • 지광습 (고려대학교 건축사회환경공학과)
  • 투고 : 2021.06.12
  • 심사 : 2021.10.01
  • 발행 : 2021.10.30

초록

기존 H형강을 활용한 방음터널의 경우 높은 중량으로 하부구조에 많은 부담을 주기 때문에 경량화된 구조와 안정성을 모두 갖춘 신형식 거더 개발이 필요하다. 본 논문에서는 H 형강 플랜지를 상/하현재로 대체하고, 복부판에 공동단면을 적용하여 새로운 방음 터널 거더 설계를 제안한다. 최적의 형상을 개발하기 위해 비지지 비율과 공극 단면 형상에 따른 구조물의 거동을 분석하였다. 비지지구간 비율이 감소할수록, 비지지구간 개수가 증가할수록 거더에 작용하는 축력이 증가하고 모멘트는 감소하였다. 또한, 복부판 공동 단면의 타원 장축의 길이가 길수록 응력집중계수가 감소하는 결과를 확인하였다. 방음터널 거더의 비지지구간 비율이 0.4, 비지지구간 개수가 16이고 복부판의 형상이 E180 단면일 때의 조합이 가장 유리하지만, 방음판에 대한 시공성을 고려하여 실제 방음터널의 최적 설계로 최대 비지지구간 개수를 13, 비지지구간 비율을 0.7로 채택하였다. 최적 매개변수를 적용한 아치형 거더 분석 결과, 복부판 공동단면의 장축의 길이가 길수록 구조적 효율과 경제성이 증가하지만, 단면부의 공동 단면의 장축 길이가 일정 구간 이상으로 커지면 최대처짐에 불리함을 확인하였다. 3개의 아치형 거더를 연결한 신형식 방음터널의 좌굴 안전성을 평가하여 좌굴에 있어 설계 하중에 비해 약 3.7배 이상 구조적 안전성을 확보하고 있는 것을 확인하였다. 경량화와 안전성을 동시에 만족하는 최적 설계를 제시하였다.

The soundproof tunnels have been generally designed with H-beam girders, and the high weight of H-beam may cause the excessive design of the substructure. To solve this problem, this paper proposes a new soundproof tunnel girder design composed of pipes and discontinuous plates. First, the structural behavior of the straight girder according to the design parameters was examined through finite element analysis. The arrangement and shape of the plates were determined as the design parameter, to obtain the optimal design of girder. After then, the structural behavior and buckling stability of the arched girder were subsequently evaluated. As a result of the parameter analysis, it was confirmed that the axial force acting on the girder increased and the moment decreased as the ratio of unsupported sections decreased or the number of supporting plates increased. The stress concentration on the pipe member was relieved by increasing the long axis length of the elliptical plate. Arched girder analysis showed that the structural efficiency increase as the long axis of elliptical plate increase. As a result of the buckling evaluation, the buckling threshold load of the three connected girders was about 3.7 times higher than the design load. Consequently, it was confirmed that the proposed soundproof tunnel structure design satisfies both light weight and structural safety.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 21CTAP-C152291-03).

참고문헌

  1. Yoon, T. I., Noh, M. H., and Lee, S. Y. (2018), Parametric Applicability Assessment of High-Strength Steel Tubes of Noise Tunnel Structures for Weight Reduction, Journal of the Korean Society of Hazard Mitigation, 18(7), 299-306. https://doi.org/10.9798/kosham.2018.18.7.299
  2. Ahn, D. W., Choi, S. J., and Noh, M. H. (2016), Evaluation of Design Compatibility for Lightweight Soundproof Tunnels Using Pipe Truss Beams, Journal of the Korean Society for Advanced Composite Structures, 7(1), 9-18. https://doi.org/10.11004/kosacs.2016.7.1.009
  3. Noh, M. H., Ahn, D. W., and Joo, H. J. (2016), Assessment of Structural Performance for a Lightweight Soundproof Tunnel Composed of Partitioned Pipe Truss Members, Journal of the Korean Society for Advanced Composite Structures, 7(1), 1-8.
  4. Noh, M., and Lee, S. Y. (2017), Finite Element Analysis of Flanged Connections of Steel Tubular Truss-Type Soundproof Tunnels, Journal of the Korean Society for Advanced Composite Structures, 8(3), 46-52. https://doi.org/10.11004/kosacs.2017.8.3.046
  5. Son, J. G., Park, G. H., and Ryu, R. E. (2014), A Development of the Light Weight Noise Tunnel on a High Degree of Efficiency and Environmentally Friendly for Railway, In Proceedings of the Korean Society for Noise and Vibration Engineering Conference (pp. 487-490). The Korean Society for Noise and Vibration Engineering.
  6. Kim, T. M., Kim, J. T., Park, G. H., Son, J. G., Ryu, L. O., and Koh, H. I. (2015), The Study of Noise Reduction by Noise Protection Roof: Design Concept, Journal of the Korean Society for Environmental Technology, 16(2), 124-130.
  7. Kim, T. M., and Kim, J. T. (2017), The Study of Reduction to Wind-loading Effect for Noise Protection Roof using a Scaled Model, Journal of the Korean Society for Environmental Technology, 18(1), 55-62.
  8. Lee, N. S., Ju M. K., Koh, H. I., Hong, J. Y., and Oh, Y. K. (2017), A Study on the Efficient Design Alternative of Sound Absoption Facilities, The Korean Society of Living Environmental System, 24(6), 824-832. https://doi.org/10.21086/ksles.2017.12.24.6.824
  9. Kim, J., and Kim, S. A. (2020), Lifespan Prediction Technique for Digital Twin-Based Noise Barrier Tunnels, Sustainability, 12(7), 2940. https://doi.org/10.3390/su12072940
  10. Wu, X., Zhu, Y., Xian, L., and Huang, Y. (2021), Fatigue Life Prediction for Semi-Closed Noise Barrier of High-Speed Railway under Wind Load, Sustainability, 13(4), 2096. https://doi.org/10.3390/su13042096
  11. Dogan, E., and Ozyuksel Ciftcioglu, A. (2020), Weight Optimization of Steel Frames with Cellular Beams Through Improved Hunting Search Algorithm, Advances in Structural Engineering, 23(5), 1024-1037. https://doi.org/10.1177/1369433219884456
  12. Ministry of Land, Infrastructure and Transport(MOLIT). (2015), Road Structure & Facilities Standards.
  13. Architectural Institute of Korea (AIK). (2016), Korean Building Code, KBC2016.
  14. Ministry of Land, Infrastructure and Transport (MOLIT). (2009), Highway Design Manual.
  15. ABAQUS (2015) Standard User's Manual. 6.12. Johnston, RI: Dassault Systemes Simulia Corp.
  16. DNV, G. (2016). Determination of structural capacity by non-linear finite element analysis methods. DNVGL-RP-C208.
  17. Korea Expressway Corporation. (2019), Highway Design Manual 19th.
  18. Korean Society of Steel Construction (KSSC) (2009). Korean steel structure design code-load and resistance factored design, KDS 14 00 00