DOI QR코드

DOI QR Code

기중 급속 동결 융해 시험 방법에 따른 철근콘크리트 보의 성능 실험 연구

An Experimental Study on the Performance of RC Beam according to the Rapid Freezing and Thawing Test Method in the Air

  • 김상우 (경상국립대학교 토목공학과) ;
  • 이동주 (경상국립대학교 토목공학과) ;
  • 김경민 (경상국립대학교 토목공학과) ;
  • 김진섭 (경상국립대학교 토목공학과)
  • 투고 : 2021.05.10
  • 심사 : 2021.08.12
  • 발행 : 2021.08.30

초록

콘크리트 구조물은 외부 극한기후환경에 노출 될 경우 공용년수가 증가할수록 다양한 문제점들이 발생할 수 있다. 이러한 문제들 중 최근 가장 문제가 되고 있는 폭우, 폭설과 같은 극한 기후요소의 작용으로 동결융해 현상이 발생한다. 본 연구에서는 서울의 경우, 동결융해가 발생하는 기간 동안에 매우 건조한 날씨를 나타내기 때문에 KS F 2456 를 참고하여 콘크리트의 기중 급속 동결 융해 시험법을 제시하였다. 콘크리트 공시체 및 철근콘크리트 휨 부재를 제작하여 0, 100, 200, 300 사이클의 기중 급속 동결 융해를 수행하였으며 성능 평가를 통해 각 실험체의 재료 및 부재 단위에서의 성능 저하를 확인하였다. 300사이클까지 기중 급속 동결 융해를 수행한 설계 강도 24 MPa의 콘크리트 압축 강도는 5.24 MPa(21%) 만큼 감소하며, 기중 급속 동결 융해가 진행될수록 콘크리트의 재료적 강도 감소에 의해 철근콘크리트 휨 부재의 철근의 응력 부담이 증가되어 지진과 같은 외력 발생에 따른 구조물의 에너지 흡수(소산) 능력이 감소한다.

Concrete structures can cause various problems as the number of common years increases when exposed to external extreme climate conditions. Among these problems, freezing and thawing occur due to the action of extreme climate factors such as heavy rain and heavy snow, which have become the most problematic in recent years. In this study, we present a rapid freezing and thawing test method of concrete in the air, referring to KS F 2456, as Seoul exhibits very dry weather during the period of freezing and thawing. Concrete test specimens and RC beams were fabricated to perform rapid freezing and thawing of 0, 100, 200, and 300 cycles, and the performance evaluation confirmed the degradation of each subject in material and member units. The design strength of 24 MPa, which performs rapid freezing and thawing in the air up to 300 cycles, decreases by 5.24 MPa (21%), and as rapid freezing and thawing in the air increases the stress burden on reinforced concrete bending members, reducing the energy absorption (dissipation) ability of structures due to earthquakes.

키워드

과제정보

본 연구는 국토교통부 건설기술연구사업의 연구비지원(21SCIP-B146946-04)에 의해 수행되었습니다.

참고문헌

  1. Lee, J. H., and Cho, J. Y. (2020), Analysis of Safety Evaluation Guidelines for Practical Maintenance of Existing Concrete Structures, LHI Journal, 11(3), 83-92.
  2. ASTM-C666/C666M-03 (2008), Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, West Conshohocken, PA: American Society for Testing and Materials.
  3. Lee, B. D., Kim, H. J., and Kang, H. J. (2008), Affecting Analysis of Air Content on the Freeze-Thaw Durability of Concrete, Proceedings Journal of the Korea Concrete Institute, 20(1), 565-568.
  4. Lee, C. Y., Lee, I. D., Kim, K. W., and Bae, S. Y. (1998), Resistance of Freeze-Thaw and Strength Development of Recycled Concrete, Journal of the Korea Concrete Institute, 10(4), 163-169.
  5. Kwon, M. H., Kim, J. S., Seo, H. S., and Jung, W. Y. (2017), Long-term Performance of Mechanically Post-installed Anchor Systems, Advances in Structural Engineering, 20(3), 288-298. https://doi.org/10.1177/1369433216649396
  6. Kim, J. H. J., Yi, N. H., Phan, D. H., Kim, S. B., and Lee, K. W. (2010), Development of Performance Based Resistance Capacity Evaluation Method for RC Compression Member under Vehicle Impact Load, Journal of the Korea Concrete Institute, 22(4), 535-546. https://doi.org/10.4334/JKCI.2010.22.4.535
  7. Kim, T. K., Choi, S. J., Shim, H. B., Ahn, T. S., and Kim, J. H. J. (2013), Satisfaction Curve Performance Based Design Method Evaluation of Concrete Specimen Subjected to Climate Change, Proceedings Journal of the Korea Concrete Institute, 25(1), 131-132.
  8. Korean Concrete Institute (KCI). (2005). Performance Based Design, KCI Report.
  9. Jun, H. Y., Kim, T. K., Lee, S. W., and Kim, J. H. J. (2011), Application of Performance Based Mixture Design (PBMD) for Self Compacting Concrete, Proceedings Journal of the Korea Concrete Institute, 23(1), 571-572.
  10. Kim, T. K., Choi, S. J., Choi, J. H., and Kim, J. J. H. (2017), Performance Based Evaluation of Concrete Strength and Freeze-Thaw Resistance from Wind Speed - Sunlight Exposure Time Effect, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(1), 049-058.
  11. Jang, G. S., Yun, H. D., Kim, S. W., Park, W. S., and Choi, K. B. (2009), Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments, Journal of the Korea Institute for Structural Maintenance and Inspection, 13(6), 126-134.
  12. Eom, T. S., and Park H. G. (2004), Energy-Base Hysteretic Model for R/C Members, Journal of the Earthquake Engineering Society of Korea, 8(5), 45-54.
  13. Kim, S. W., Lee, D. J., Kim, K. M., and Kim, J. S. (2020), Evaluation of Behavior Characteristics of Reinforced Concrete Beam Structures by Freeze-thawing, Journal of the Korean Society for Advanced Composite Structures, 11(2), 39-45. https://doi.org/10.11004/kosacs.2020.11.2.039
  14. Lim, H. J., Park, H. G., and Eom, T. S. (2003), Application of Energy Dissipation Capacity of Earthquake Design, Journal of the Earthquake Engineering Society, 7(6), 109-117. https://doi.org/10.5000/EESK.2003.7.6.109