DOI QR코드

DOI QR Code

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis

비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가

  • 황승현 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 스마트시티공학부) ;
  • 김상희 (경기대학교 스마트시티공학부) ;
  • 임진선 (삼우IMC 기술연구소) ;
  • 임채림 (경기대학교 일반대학원 건축공학과)
  • Received : 2021.04.05
  • Accepted : 2021.06.09
  • Published : 2021.08.30

Abstract

The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

이 연구에서는 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동을 합리적으로 평가하기 위하여 범용프로그램인 Abaqus를 이용한 비선형 유한요소해석 절차를 제시하였다. 조적벽체의 유한요소 모델은 콘크리트 손상 소성(concrete damaged plasticity, CDP)모델 및 벽돌-모르타르 계면 특성은 Yang et al.이 제시한 조적 프리즘의 압축 및 인장의 응력-변형률 모델과 전단마찰모델을 기반으로 메소-스케일법을 적용하였다. 유한요소 해석결과를 다양한 변수조건에서 실험결과와 비교한 결과, 강봉 트러스 시스템으로 보강된 조적벽체의 균열진전, 파괴 모드, 강체회전 내력 및 최대내력 그리고 횡하중-횡변위 관계에 대한 실험결과와 잘 일치하였다. 따라서 제시된 유한요소해석 절차는 조적벽체의 내진보강 설계에 합리적으로 이용될 수 있다고 판단된다.

Keywords

Acknowledgement

본연구는 경기도의 경기도 지역협력연구센터사업의 일환으로 수행하였음[GRRC경기2020-B01, 지능형 산업 데이터 분석 연구].

References

  1. ACI 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and commentary (ACI 318R-19). American Concrete Institute, Farmington Hills, MI, USA.
  2. AIK (2018), Site Inspection and Damage Investigation of Buildings by Earthquakes in Gyeongju and Pohang, Architectural Institute of Korea, Seoul.
  3. Bhattacharya, S., Nayak S., and Dutta, S. C. (2014), A Critical Review of Retrofitting Methods for Unreinforced Masonry Structures, International Journal of Disaster Risk Reduction, 7, 51-67. https://doi.org/10.1016/j.ijdrr.2013.12.004
  4. Bui, T. T., and Limam, A. (2012), Masonry Walls under Membrane or Bending Loading Cases: Experiments and Discrete Element Analysis, Proceedings of The Eleventh International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, Scotland, 1-17.
  5. Darbhanzi, A., Marefat, M. S., and Khanmohammadi, M. (2014), Investigation of In-plane Seismic Retrofit of Unreinforced Masonry Walls by Means of Vertical Steel Ties, Construction and Building Materials, 52, 122-129. https://doi.org/10.1016/j.conbuildmat.2013.11.020
  6. Goodno, B. J., and Gere, J. M. (2017), Mechanics of Materials(9th Edition), CENGAGE Learning, MA, USA
  7. Hwang, S. H., Kim, S., and Yang, K. H. (2020), In-plane Seismic Performance of Masonry Wall Retrofitted with Prestressed Steel-bar Truss, Earthquakes and Structures, 19(6), 459-469. https://doi.org/10.12989/EAS.2020.19.6.459
  8. Hwang, S. H., Yang, K. H., and Kim, S. (2021), In-plane and Out-of-plane Seismic Performances of Masonry Walls Strengthened with Steel-Bar Truss Systems, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(1), 16-24. (in Korean, with English abstract) https://doi.org/10.11112/JKSMI.2021.25.1.16
  9. Lee, J. H. (2005), Seismic Capacity and Seismic Retrofitting of Low Rise Buildings Unreinforced Masonry, Brick-infilled RC Frame and Steel Slit Damper Retrofitted RC Frame, Ph.D. dissertation, Seoul, Kwangwoon University, Department of Architectural Engineering.
  10. Lee, Y., Yang, K. H., and Hwang, Y. H. (2019), Evaluation of Shear Friction Stress-Slip Relationship at Concrete Brick and Mortar Interfaces, Journal of the Korea Concrete Institute, 31(1), 21-27. (in Korean, with English abstract) https://doi.org/10.4334/jkci.2019.31.1.021
  11. Lourenco, P. B. (1996), Computational Strategy for Masonry Structures. Ph.D. dissertation, Delft, Technische Universiteit Delft, Department of Civil Engineering and Geosciences.
  12. Mohamad, A. B. A. E., and Chen, Z. (2016), Experimental and Numerical Analysis of the Compressive and Shear Behavior of a New Type of Self-Insulating Concrete Masonry System. Applied Sciences, 6(9), 1-14.
  13. Popa, V., Pascu, R., Papurcu, A., and Albota, E. (2016), Retrofitting of Squat Masonry Walls by FRP Grids Bonded by Cement-based Mortar, Earthquakes and Structures, 10(1), 125-139. https://doi.org/10.12989/eas.2016.10.1.125
  14. Wriggers, P. (2001), Nonlinear Finite Element Methods, Springer, Berlin.
  15. Yang, K. H. (2020), Development of Damper Performance-based Steel Bar Truss System for In- and Out-plane Seismic Strengthening of Masonry Structures, Technical report, Korea Agency for Infrastructure Technology Advancement, Korea.
  16. Yang, K. H., Lee, Y., and Hwang, Y. H. (2019a), A Stress-Strain Model for Brick Prism under Uniaxial Compression, Advances in Civil Engineering, 2019, 1-10.
  17. Yang, K. H., Lee, Y., and Hwang, Y. H. (2019b), Evaluation of Tensile Stress-strain Relationship of Masonry Elements, Journal of the Architectural Institute of Korea Structure & Construction, 35(3), 27-33. (in Korean, with English abstract) https://doi.org/10.5659/JAIK_SC.2019.35.3.27