DOI QR코드

DOI QR Code

A Fabrication and Antifogging Performance of Random Polypropylene Film Containing Monoglycerides as Antifogging Agent

  • Jo, Wan (R&D Center, HDC Hyundai EP Co., Ltd.) ;
  • Park, Jin Hwan (Materials Chemistry & Engineering Laboratory, Department of Polymer Science & Engineering, Dankook University) ;
  • Hwang, Seok-Ho (Materials Chemistry & Engineering Laboratory, Department of Polymer Science & Engineering, Dankook University)
  • Received : 2021.11.01
  • Accepted : 2021.11.22
  • Published : 2021.12.31

Abstract

In this study, random polypropylene (rPP) was compounded with two of monoglycerides, namely, glyceryl monolaurate (GML) and glyceryl monostearate (GMS), as antifogging agents to improve its antifogging performance. rPP film samples were prepared by a film-casting method using a three-roll casting machine after melt blending through a twin screw extruder. With an increase in the monoglyceride content, the melt flow index for rPP films with GML and GMS increased, and their yield strength decreased. The incorporation of GMS in rPP was proven to be more effective in improving its physical properties than was rPP with GML. When GML and GMS were separately added to the rPP film at contents of more than 1 phr and more than 5 phr, respectively, the film exhibited antifogging performance.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 "소재부품기술개발사업" (태양광 모듈용 고투과 열가소성 탄성소재, 과제번호: 20012770)의 지원을 받아 수행되었으며 이에 감사드립니다.

References

  1. Y. C. Han, S. Lee, B. H. Ahn, S. W. Oh, and Y. S. Kang, "Preparation of anti-fogging low density polyethylene film by using γ-irradiation", Sens. Actuators B Chem., 126, 266 (2007). https://doi.org/10.1016/j.snb.2006.12.013
  2. C. Guang-Liang, Z. Xu, H. Jun, S. Xiao-Lei, C. Zhi-Li, X. Fei, and S. Massey, "Three different low-temperature plasma-based methods for hydrophilicity improvement of polyethylene films at atmospheric pressure", Chin. Phys. B, 22, 115206 (2013). https://doi.org/10.1088/1674-1056/22/11/115206
  3. K. W. McMillin, "Where is MAP going A review and future potential of modified atmosphere packaging for meat", Meat Sci., 80, 43 (2008). https://doi.org/10.1016/j.meatsci.2008.05.028
  4. K. Marsh and B. Bugusu, "Food packaging-roles, materials, and environmental issues", J. Food Sci., 72, R39 (2007). https://doi.org/10.1111/j.1750-3841.2007.00301.x
  5. R. Coles, D. McDowell, and M. J. Kirwan, "Food Packaging Technology", CRC Press LLC. Boca Raton, 2003.
  6. S. Ebnesajjad, "Plastic films in food packaging: materials, technology and applications", William Andrew. Waltham, 2013.
  7. J. E. Brown and M. M. Birky, "Phosgene in the thermal decomposition products of poly (Vinyl Chloride): generation, detection and measurement", J. Anal. Toxicol., 4, 166 (1980). https://doi.org/10.1093/jat/4.4.166
  8. A. C. Chang, L. Tau, A. Hiltner, and E. Baer, "Structure of blown film from blends of polyethylene and high melt strength polypropylene", Polymer, 43, 4923 (2002). https://doi.org/10.1016/S0032-3861(02)00304-X
  9. J. Markarian, "Additives in food packaging", Plast. Addit. Compd., 4, 16 (2002). https://doi.org/10.1016/S1464-391X(02)80066-6
  10. M. Ataeefard, S. Moradian, M. Mirabedini, M. Ebrahimi, and S. Asiaban, "Surface properties of low density polyethylene upon low-temperature plasma treatment with various gases", Plasma Chem. Plasma Process., 28, 377 (2008). https://doi.org/10.1007/s11090-008-9126-2
  11. E. Karbassi, A. Asadinezhad, M. Lehocky, P. Humpolicek, A. Vesel, I. Novak, and P. Saha, "Antibacterial performance of alginic acid coating on polyethylene film", Int. J. Mol. Sci., 15, 14684 (2014). https://doi.org/10.3390/ijms150814684
  12. P. Wagner, "Anti-fog additives give clear advantage", Plast. Addit. Compd., 3, 18 (2001). https://doi.org/10.1016/S1464-391X(01)80301-9
  13. N. Juvonen, "Improved Antifog Properties for Polyethylene Sealable Lids", Master's Thesis. Tampere University of Technology, Tampere, Finland (2017).
  14. J. Rosen-Kligvasser, R. Y. Suckeveriene, R. Tchoudakov, and M. Narkis, "A novel methodology for controlled migration of antifog from thin polyolefin films", Polym. Eng. Sci., 54, 2023 (2014). https://doi.org/10.1002/pen.23755
  15. G. Lamberti, V. Brucato, and G. Titomanlio, "Orientation and crystallinity in film casting of polypropylene", J. Appl. Polym. Sci., 84, 1981 (2002). https://doi.org/10.1002/app.10422
  16. H. Kometani, T. Matsumura, T. Suga, and T. Kanai, "Experimental and theoretical analyses of film casting process", J. Polym. Eng., 27, 1 (2007). https://doi.org/10.1515/POLYENG.2007.27.1.1
  17. L. Dai, X. Wang, J. Zhang, F. Wang, R. Ou, and Y. Song, "Effects of lubricants on the rheological and mechanical properties of wood flour/polypropylene composites", J. Appl. Polym. Sci., 136, 47667 (2019). https://doi.org/10.1002/app.47667
  18. M.-J. Khalaj, H. Ahmadi, R. Lesankhosh, and G. Khalaj, "Study of physical and mechanical properties of polypropylene nanocomposites for food packaging applications: Nanoclay modified with iron nanoparticles", Trends Food Sci. Technol., 51, 41 (2016). https://doi.org/10.1016/j.tifs.2016.03.007
  19. K. Shlosman, J. Rosen-Kligvasser, R. Sukeveriene, R. Tchoudakov, and M. Narkis, "Novel antifog modification for controlled migration and prolonged wetting of LLDPE thin films", Eur. Polym. J., 90, 220 (2017). https://doi.org/10.1016/j.eurpolymj.2017.03.025