DOI QR코드

DOI QR Code

Validation of soy isoflavone intake and its health effects: a review of the development of exposure biomarkers

  • Jang, Hwan-Hee (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Young-Min (Division of Applied Food System, Major of Food and Nutrition, Seoul Women's University) ;
  • Choe, Jeong-Sook (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kwon, Oran (Department of Nutritional Science and Food Management, Ewha Womans University)
  • Received : 2020.03.31
  • Accepted : 2020.07.21
  • Published : 2021.02.01

Abstract

BACKGROUND/OBJECTIVES: It is difficult to consistently demonstrate the health effects of soy isoflavones owing to the multitude of factors contributing to their bioavailability. To accurately verify these health effects, dietary isoflavone intake should be measured using a biologically active dose rather than an intake dose. This concept has been expanded to the development of new exposure biomarkers in nutrition research. This review aims to provide an overview of the development of exposure biomarkers and suggest a novel research strategy for identifying the health effects of soy isoflavone intake. MATERIALS/METHODS: We cover recent studies on the health effects of soy isoflavones focusing on isoflavone metabolites as exposure biomarkers. RESULTS: Compared to non-fermented soy foods, fermented soy foods cause an increased concentration of isoflavones in the biofluid immediately following ingestion. The correlation between exposure biomarkers in blood and urine and the food frequency questionnaire was slightly lower than that of corresponding 24-h dietary recalls. Urinary and blood isoflavone levels did not show a consistent association with chronic disease and cancer risk. CONCLUSION: It is crucial to understand the variable bioavailabilities of soy isoflavones, which may affect evaluations of soy isoflavone intake in health and disease. Further studies on the development of valid exposure biomarkers are needed to thoroughly investigate the health effects of isoflavone.

Keywords

References

  1. Pratico G, Gao Q, Scalbert A, Vergeres G, Kolehmainen M, Manach C, Brennan L, Pedapati SH, Afman LA, Wishart DS, Vazquez-Fresno R, Andres-Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJ, Dragsted LO. Guidelines for Biomarker of Food Intake Reviews (BFIRev): how to conduct an extensive literature search for biomarker of food intake discovery. Genes Nutr 2018;13:3. https://doi.org/10.1186/s12263-018-0592-8
  2. Kwon O. A big picture view of precision nutrition: from reductionism to holism. J Nutr Health 2019;52:1-5. https://doi.org/10.4163/jnh.2019.52.1.1
  3. Gao Q, Pratico G, Scalbert A, Vergeres G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres-Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJ, Dragsted LO. A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr 2017;12:34. https://doi.org/10.1186/s12263-017-0587-x
  4. Shi L, Brunius C, Bergdahl IA, Johansson I, Rolandsson O, Donat Vargas C, Kiviranta H, Hanhineva K, Akesson A, Landberg R. Joint analysis of metabolite markers of fish intake and persistent organic pollutants in relation to type 2 diabetes risk in Swedish adults. J Nutr 2019;149:1413-23. https://doi.org/10.1093/jn/nxz068
  5. Loftfield E, Rothwell JA, Sinha R, Keski-Rahkonen P, Robinot N, Albanes D, Weinstein SJ, Derkach A, Sampson J, Scalbert A, Freedman ND. Prospective investigation of serum metabolites, coffee drinking, liver cancer incidence, and liver disease mortality. J Natl Cancer Inst 2020;112:286-94. https://doi.org/10.1093/jnci/djz122
  6. Lampe JW. Isoflavonoid and lignan phytoestrogens as dietary biomarkers. J Nutr 2003;133 Suppl 3:956S-964S. https://doi.org/10.1093/jn/133.3.956S
  7. Holst B, Williamson G. Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol 2008;19:73-82. https://doi.org/10.1016/j.copbio.2008.03.003
  8. Maruvada P, Lampe JW, Wishart DS, Barupal D, Chester DN, Dodd D, Djoumbou-Feunang Y, Dorrestein PC, Dragsted LO, Draper J, Duffy LC, Dwyer JT, Emenaker NJ, Fiehn O, Gerszten RE, Hu FB, Karp RW, Klurfeld DM, Laughlin MR, Little AR, Lynch CJ, Moore SC, Nicastro HL, O'Brien DM, Ordovas JM, Osganian SK, Playdon M, Prentice R, Raftery D, Reisdorph N, Roche HM, Ross SA, Sang S, Scalbert A, Srinivas PR, Zeisel SH. Perspective: dietaryiomarkers of intake and exposure-exploration with omics approaches. Adv Nutr 2020;11:200-15.
  9. Heinzmann SS, Holmes E, Kochhar S, Nicholson JK, Schmitt-Kopplin P. Correction to 2-Furoylglycine as a Candidate Biomarker of Coffee Consumption. J Agric Food Chem 2016;64:8958. https://doi.org/10.1021/acs.jafc.6b04833
  10. Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, Slimani N, Zamora-Ros R, Rundle M, Frost G, Gibbons H, Carr E, Brennan L, Cross AJ, Pala V, Panico S, Sacerdote C, Palli D, Tumino R, Kuhn T, Kaaks R, Boeing H, Floegel A, Mancini F, Boutron-Ruault MC, Baglietto L, Trichopoulou A, Naska A, Orfanos P, Scalbert A. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr 2017;105:600-8. https://doi.org/10.3945/ajcn.116.146639
  11. Andersen MB, Reinbach HC, Rinnan A, Barri T, Mithril C, Dragsted LO. Discovery of exposure markers in urine for Brassica-containing meals served with different protein sources by UPLC-qTOF-MS untargeted metabolomics. Metabolomics 2013;9:984-97. https://doi.org/10.1007/s11306-013-0522-0
  12. Urpi-Sarda M, Boto-Ordonez M, Queipo-Ortuno MI, Tulipani S, Corella D, Estruch R, Tinahones FJ, Andres-Lacueva C. Phenolic and microbial-targeted metabolomics to discovering and evaluating wine intake biomarkers in human urine and plasma. Electrophoresis 2015;36:2259-68. https://doi.org/10.1002/elps.201400506
  13. Mitry P, Wawro N, Rohrmann S, Giesbertz P, Daniel H, Linseisen J. Plasma concentrations of anserine, carnosine and pi-methylhistidine as biomarkers of habitual meat consumption. Eur J Clin Nutr 2019;73:692-702. https://doi.org/10.1038/s41430-018-0248-1
  14. Garcia-Aloy M, Llorach R, Urpi-Sarda M, Tulipani S, Salas-Salvado J, Martinez-Gonzalez MA, Corella D, Fito M, Estruch R, Serra-Majem L, Andres-Lacueva C. Nutrimetabolomics fingerprinting to identify biomarkers of bread exposure in a free-living population from the PREDIMED study cohort. Metabolomics 2015;11:155-65. https://doi.org/10.1007/s11306-014-0682-6
  15. Zhu Y, Wang P, Sha W, Sang S. Urinary biomarkers of whole grain wheat intake identified by non-targeted and targeted metabolomics approaches. Sci Rep 2016;6:36278. https://doi.org/10.1038/srep36278
  16. Miles FL, Lloren JI, Haddad E, Jaceldo-Siegl K, Knutsen S, Sabate J, Fraser GE. Plasma, urine, and adipose tissue biomarkers of dietary intake differ between vegetarian and non-vegetarian diet groups in the Adventist Health Study-2. J Nutr 2019;149:667-75. https://doi.org/10.1093/jn/nxy292
  17. Akbaraly T, Wurtz P, Singh-Manoux A, Shipley MJ, Haapakoski R, Lehto M, Desrumaux C, Kahönen M, Lehtimaki T, Mikkila V, Hingorani A, Humphries SE, Kangas AJ, Soininen P, Raitakari O, Ala-Korpela M, Kivimaki M. Association of circulating metabolites with healthy diet and risk of cardiovascular disease: analysis of two cohort studies. Sci Rep 2018;8:8620. https://doi.org/10.1038/s41598-018-26441-1
  18. Setchell KD. Absorption and metabolism of soy isoflavones-from food to dietary supplements and adults to infants. J Nutr 2000;130:654S-655S. https://doi.org/10.1093/jn/130.3.654S
  19. de Pascual-Teresa S, Hallund J, Talbot D, Schroot J, Williams CM, Bugel S, Cassidy A. Absorption of isoflavones in humans: effects of food matrix and processing. J Nutr Biochem 2006;17:257-64. https://doi.org/10.1016/j.jnutbio.2005.04.008
  20. Zhang Y, Hendrich S, Murphy PA. Glucuronides are the main isoflavone metabolites in women. J Nutr 2003;133:399-404. https://doi.org/10.1093/jn/133.2.399
  21. Nielsen IL, Williamson G. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr Cancer 2007;57:1-10. https://doi.org/10.1080/01635580701267677
  22. Setchell KD. The history and basic science development of soy isoflavones. Menopause 2017;24:1338-50. https://doi.org/10.1097/GME.0000000000001018
  23. Zeng M, Sun R, Basu S, Ma Y, Ge S, Yin T, Gao S, Zhang J, Hu M. Disposition of flavonoids via recycling: Direct biliary excretion of enterically or extrahepatically derived flavonoid glucuronides. Mol Nutr Food Res 2016;60:1006-19. https://doi.org/10.1002/mnfr.201500692
  24. Barnes S. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 2010;8:89-98. https://doi.org/10.1089/lrb.2009.0030
  25. Lee DH, Kim MJ, Ahn J, Lee SH, Lee H, Kim JH, Park SH, Jang YJ, Ha TY, Jung CH. Nutrikinetics of isoflavone metabolites after fermented soybean product (cheonggukjang) ingestion in ovariectomized mice. Mol Nutr Food Res 2017;61:1700322. https://doi.org/10.1002/mnfr.201700322
  26. Shelnutt SR, Cimino CO, Wiggins PA, Ronis MJ, Badger TM. Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am J Clin Nutr 2002;76:588-94. https://doi.org/10.1093/ajcn/76.3.588
  27. Ronis MJ, Little JM, Barone GW, Chen G, Radominska-Pandya A, Badger TM. Sulfation of the isoflavones genistein and daidzein in human and rat liver and gastrointestinal tract. J Med Food 2006;9:348-55. https://doi.org/10.1089/jmf.2006.9.348
  28. D'Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R. Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 2010;11:1321-42. https://doi.org/10.3390/ijms11041321
  29. Yonemoto-Yano H, Maebuchi M, Fukui K, Tsuzaki S, Takamatsu K, Uehara M. Malonyl isoflavone glucosides are chiefly hydrolyzed and absorbed in the colon. J Agric Food Chem 2014;62:2264-70. https://doi.org/10.1021/jf404378r
  30. Okabe Y, Shimazu T, Tanimoto H. Higher bioavailability of isoflavones after a single ingestion of aglycone-rich fermented soybeans compared with glucoside-rich non-fermented soybeans in Japanese postmenopausal women. J Sci Food Agric 2011;91:658-63. https://doi.org/10.1002/jsfa.4228
  31. Kano M, Takayanagi T, Harada K, Sawada S, Ishikawa F. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults. J Nutr 2006;136:2291-6. https://doi.org/10.1093/jn/136.9.2291
  32. Tsangalis D, Wilcox G, Shah NP, Stojanovska L. Bioavailability of isoflavone phytoestrogens in postmenopausal women consuming soya milk fermented with probiotic bifidobacteria. Br J Nutr 2005;93:867-77. https://doi.org/10.1079/BJN20041299
  33. Rienks J, Barbaresko J, Nöthlings U. Association of isoflavone biomarkers with risk of chronic disease and mortality: a systematic review and meta-analysis of observational studies. Nutr Rev 2017;75:616-41. https://doi.org/10.1093/nutrit/nux021
  34. Kim J, Kim HJ, Joung H, Park MK, Li S, Song Y, Franke AA, Paik HY. Overnight urinary excretion of isoflavones as an indicator for dietary isoflavone intake in Korean girls of pubertal age. Br J Nutr 2010;104:709-15. https://doi.org/10.1017/S0007114510000978
  35. Morimoto Y, Beckford F, Franke AA, Maskarinec G. Urinary isoflavonoid excretion as a biomarker of dietary soy intake during two randomized soy trials. Asia Pac J Clin Nutr 2014;23:205-9.
  36. Atkinson C, Skor HE, Fitzgibbons ED, Scholes D, Chen C, Wahala K, Schwartz SM, Lampe JW. Overnight urinary isoflavone excretion in a population of women living in the United States, and its relationship to isoflavone intake. Cancer Epidemiol Biomarkers Prev 2002;11:253-60.
  37. Chavez-Suarez KM, Ortega-Velez MI, Valenzuela-Quintanar AI, Galvan-Portillo M, Lopez-Carrillo L, Esparza-Romero J, Saucedo-Tamayo MS, Robles-Burgueno MR, Palma-Duran SA, Gutierrez-Coronado ML, Campa-Siqueiros MM, Grajeda-Cota P, Caire-Juvera G. Phytoestrogen Concentrations in Human Urine as Biomarkers for Dietary Phytoestrogen Intake in Mexican Women. Nutrients 2017;9:1078. https://doi.org/10.3390/nu9101078
  38. Ritchie MR, Morton MS, Deighton N, Blake A, Cummings JH. Plasma and urinary phyto-oestrogens as biomarkers of intake: validation by duplicate diet analysis. Br J Nutr 2004;91:447-57. https://doi.org/10.1079/BJN20031062
  39. Fraser GE, Jaceldo-Siegl K, Henning SM, Fan J, Knutsen SF, Haddad EH, Sabate J, Beeson WL, Bennett H. Biomarkers of dietary intake are correlated with corresponding measures from repeated dietary recalls and food-frequency questionnaires in the Adventist Health Study-2. J Nutr 2016;146:586-94. https://doi.org/10.3945/jn.115.225508
  40. Heald CL, Bolton-Smith C, Ritchie MR, Morton MS, Alexander FE. Phyto-oestrogen intake in Scottish men: use of serum to validate a self-administered food-frequency questionnaire in older men. Eur J Clin Nutr 2006;60:129-35. https://doi.org/10.1038/sj.ejcn.1602277
  41. Tseng M, Olufade T, Kurzer MS, Wahala K, Fang CY, van der Schouw YT, Daly MB. Food frequency questionnaires and overnight urines are valid indicators of daidzein and genistein intake in U.S. women relative to multiple 24-h urine samples. Nutr Cancer 2008;60:619-26. https://doi.org/10.1080/01635580801993751
  42. French MR, Thompson LU, Hawker GA. Validation of a phytoestrogen food frequency questionnaire with urinary concentrations of isoflavones and lignan metabolites in premenopausal women. J Am Coll Nutr 2007;26:76-82. https://doi.org/10.1080/07315724.2007.10719588
  43. Whitton C, Ho JC, Tay Z, Rebello SA, Lu Y, Ong CN, van Dam RM. Relative validity and reproducibility of a food frequency questionnaire for assessing dietary intakes in a multi-ethnic Asian population using 24-h dietary recalls and biomarkers. Nutrients 2017;9:1059. https://doi.org/10.3390/nu9101059
  44. Yamori Y, Sagara M, Arai Y, Kobayashi H, Kishimoto K, Matsuno I, Mori H, Mori M. Soy and fish as features of the Japanese diet and cardiovascular disease risks. PLoS One 2017;12:e0176039. https://doi.org/10.1371/journal.pone.0176039
  45. Yu D, Shu XO, Li H, Yang G, Cai Q, Xiang YB, Ji BT, Franke AA, Gao YT, Zheng W, Zhang X. Dietary isoflavones, urinary isoflavonoids, and risk of ischemic stroke in women. Am J Clin Nutr 2015;102:680-6. https://doi.org/10.3945/ajcn.115.111591
  46. Ding M, Franke AA, Rosner BA, Giovannucci E, van Dam RM, Tworoger SS, Hu FB, Sun Q. Urinary isoflavonoids and risk of type 2 diabetes: a prospective investigation in US women. Br J Nutr 2015;114:1694-701. https://doi.org/10.1017/S0007114515003359
  47. Wu Y, Zhang L, Na R, Xu J, Xiong Z, Zhang N, Dai W, Jiang H, Ding Q. Plasma genistein and risk of prostate cancer in Chinese population. Int Urol Nephrol 2015;47:965-70. https://doi.org/10.1007/s11255-015-0981-5
  48. Michikawa T, Inoue M, Sawada N, Tanaka Y, Yamaji T, Iwasaki M, Shimazu T, Sasazuki S, Mizokami M, Tsugane S; The Japan Public Health Center-based Prospective Study Group. Plasma isoflavones and risk of primary liver cancer in Japanese women and men with hepatitis virus infection: a nested case-control study. Cancer Epidemiol Biomarkers Prev 2015;24:532-7. https://doi.org/10.1158/1055-9965.EPI-14-1118