DOI QR코드

DOI QR Code

Adsorption of Cesium and Strontium Ions in Aqueous Phase Using Porous Metal Organic Frameworks Connected with Functional Group

작용기 적용 다공성 금속 유기골격체를 이용한 수중 세슘 및 스트론튬 이온의 흡착 제거

  • Received : 2021.01.04
  • Accepted : 2021.01.22
  • Published : 2021.01.31

Abstract

In the current study, MIL-101(Cr)-SO3H[HCl] as metal-organic frameworks (MOFs) was fabricated via a hydrothermal method. The physicochemical properties of the synthesized material were characterized using XRD, FT-IR, FE-SEM, TEM, and BET surface area analysis. The XRD diffraction pattern of the prepared MIL-101(Cr)-SO3H[HCl] was similar to previously reported patterns of MIL-101(Cr) type materials, indicating successful synthesis of MIL-101(Cr)-SO3H[HCl]. The FT-IR spectrum revealed the molecular structure and functional groups of the synthesized MIL-101(Cr)-SO3H[HCl]. FE-SEM and TEM images indicated the formation of rectangular parallelopiped structures in the prepared MIL-101(Cr)-SO3H[HCl]. Furthermore, the EDS spectrum showed that the synthesized material consisted of the elements of Cr, O, S, and C. The fabricated MIL-101(Cr)-SO3H[HCl] was then employed as an adsorbent for the removal of Sr2+ and Cs+ from aqueous solutions. The adsorption kinetics and adsorption isotherm models were studied in detail. The maximum adsorption capacities of MIL-101(Cr)-SO3H[HCl] for Sr2+ and Cs+ according to pH (3, 5.3~5.8, 10) were 35.05, 43.35, and 79.72 mg/g and 78.58, 74.58, and 169.74 mg/g, respectively. These results demonstrate the potential of the synthesized MOFs, which can be effectively applied as an adsorbent for the removal of Sr2+ and Cs+ ions from aqueous solutions and other diverse applications.

Keywords

Acknowledgement

본 연구는 2019년도 부산가톨릭대학교 교내학술연구비 및 2020년도 부산녹색환경지원센터 연구개발사업(20-4-10-11)의 지원을 받아 수행되었습니다.

References

  1. Akiyama, G., Matsuda, R., Sato, H., Takata, M., Kitagawa, S., 2011, Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups, Adv. Mater., 23, 3294-3297. https://doi.org/10.1002/adma.201101356
  2. Bernt, S., Guillerm, V., Serre, C., Stock, N., 2011, Direct covalent postsynthetic chemical modification of Cr-MIL-101 using nitrating acid, Chem. Commun., 47, 2838-2840. https://doi.org/10.1039/c0cc04526h
  3. Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., Lillerud, K. P., 2008, A New zirconium inorganic guilding brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130, 13850-13851. https://doi.org/10.1021/ja8057953
  4. Celestian, A. J., Kubicki, J. D., Hanson, J., Clearfield, A., Parise, J. B., 2008, The mechanism responsible for extraordinary Cs ion selectivity in crystalline silicotitanate, J. Am. Chem. Soc., 130, 11689-11694. https://doi.org/10.1021/ja801134a
  5. Chitra, S., Shanmugamani, A. G., Shanmugamani, R., Kalavathi, S., Paul, B., 2017, Selective removal of cesium and strontium by crystalline silicotitanates, J. Radioanal. Nucl. Chem., 312, 507-515. https://doi.org/10.1007/s10967-017-5249-3
  6. Choi, J. H., Lee, C. H., 2019, Adsorption and desorption characteristics of Sr, Cs, and Na ions with Na-A zeolite synthesized from coal fly ash in low-alkali condition, J. Environ. Sci. Int., 28, 561-570. https://doi.org/10.5322/jesi.2019.28.6.561
  7. Choi, J. H., Lee, C. H., 2020, Adsorption kinetic and isotherm characteristics of Mn ions with zeolitic materials synthesized from industrial solid waste, J. Environ. Sci. Int., 29, 827-835. https://doi.org/10.5322/JESI.2020.29.8.827
  8. Dang, S., Ma, E., Sun, Z. M., Zhang, H., 2012, A Layer-structured Xu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach, J. Mater. Chem., 22, 16920-16926. https://doi.org/10.1039/c2jm32661b
  9. Duignan, M. R., Nash, C. A., 2010, Removal of cesium from savannah river site waste with sphereical resorcinol formaldehyde ion exchange resin: experimental tests, Sep. Sci. Technol., 45, 1828-1840. https://doi.org/10.1080/01496395.2010.493105
  10. Ferey, G., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surble', S., Margiolaki, I., 2005, A Chromium terephthalate-based solid with unusually large pore volumes and surface area, Science, 309, 2040-2042. https://doi.org/10.1126/science.1116275
  11. Feng, X., Ding, X., Jiang, D., 2012, Covalent organic frameworks, Chem. Soc. Rev., 41, 6010-6022. https://doi.org/10.1039/c2cs35157a
  12. Guo, H., Lin, F., Chen, J., Li, F., Weng, W., 2015, Metal-organic framework MIL-125(Ti) for efficient adsorptive removal of Rhodamine B from aqueous solution, Appl. Organomet. Chem., 29, 12-19. https://doi.org/10.1002/aoc.3237
  13. Ha, J. C., Song, Y. J., 2015, An Investigation of awareness on the Fukushima nuclear accident and radioactive contamination, J. Rad. Prot. Res., 41, 7-14. https://doi.org/10.14407/jrpr.2016.41.1.007
  14. Hassan, N. M., Adu-Wusu, K., 2005, Cesium removal from hanford tank waste solution using resorcinol-formaldehyde resin, Solvent Extr. Ion Exch., 23, 375-389. https://doi.org/10.1081/SEI-200056519
  15. Kitagawa, S., Kitaura, R., Noro, S. I., 2004, Functional porous coordination polymers, Angew. Chem. Int. Ed., 43, 2334-2375. https://doi.org/10.1002/anie.200300610
  16. Lee, J. Y., Choi, J. H., 2018, Adsorption and photocatalytic degradation of dyes using synthesized metal-organic framework NH2-MIL-101(Fe), J. Environ. Sci. Int., 27, 611-620. https://doi.org/10.5322/JESI.2018.27.7.611
  17. Lee, Y., Kim, J., Ahn, W., 2013, Synthesis of metal-organic frameworks: a mini review, Korean J. Chem. Eng., 30, 1667-1680. https://doi.org/10.1007/s11814-013-0140-6
  18. Ma, L., Xu, L., Jiang, H., Yuan, X., 2019, Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid, RSC Adv., 9, 5692-5700. https://doi.org/10.1039/c8ra10366f
  19. Park, Y., Kim, C., Shin, W. S., Choi, S. J., 2013, Sorptive removal of radionuclides (cobalt, strontium and cesium) using AMP/IO-PAN composites, Journal of nuclear fuel cycle and waste technology, 11, 259-269. https://doi.org/10.7733/JNFCWT-K.2013.11.4.259
  20. Todd, T. A., Batcheller, T. A., Law, J. D., Herbst, R. S., 2004, Cesium and strontium separation technologies literature review, Idaho National Laboratory.
  21. Zang, Y., Shi, J., Zhang, F., Zhong, Y., Zhu, W., 2013, Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification, Catal. Sci. Technol., 3, 2044-2049. https://doi.org/10.1039/c3cy00044c
  22. Zhou, H. C., Long, J. R., Yaghi, O. M., 2012, Introduction to metal-organic frameworks, Chem. Rev., 112, 673-674. https://doi.org/10.1021/cr300014x
  23. Zhou, Y. X., Chen, Y. Z., Hu, Y., Huang, G., Yu, S. H., Jiang, H. L., 2014, MIL-101-SO3H: A highly efficient bronsted acid catalyst for heterogeneous alcoholysis of expoxides under ambient conditions, Chem. Eur. J., 20, 14976-14980. https://doi.org/10.1002/chem.201404104