DOI QR코드

DOI QR Code

The Experimental Assessment of Influence Factors on KLS-1 Microwave Sintering

한국형 인공월면토(KLS-1) 마이크로파 소결에 미치는 영향인자에 관한 실험적 연구

  • Jin, Hyunwoo (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology) ;
  • Lee, Jangguen (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology) ;
  • Ryu, Byung Hyun (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology) ;
  • Shin, Hyu-Soung (Dept., Dept. of Future Tech. & Convergence Research, Korea Institute of Civil Engrg. and Building Technology) ;
  • Kim, Young-Jae (Extreme Engrg. Research Center, Korea Institute of Civil Engrg. and Building Technology)
  • 진현우 (한국건설기술연구원 극한환경연구센터) ;
  • 이장근 (한국건설기술연구원 극한환경연구센터) ;
  • 유병현 (한국건설기술연구원 극한환경연구센터) ;
  • 신휴성 (한국건설기술연구원 미래융합연구본부) ;
  • 김영재 (한국건설기술연구원 극한환경연구센터)
  • Received : 2021.01.28
  • Accepted : 2021.02.12
  • Published : 2021.02.28

Abstract

The Moon has been an attractive planet as an outpost for deep space exploration since He-3 and water ice which can be used as energy resources were discovered. In-Situ Resource Utilization (ISRU) construction material fabrication method is required for sustainable space planet exploration. In this paper, the possibility of microwave sintering technology for construction material fabrication was evaluated using lunar regolith that can be easily collected from the Moon surface. Experimental assessment of the influence factors on microwave sintering was conducted using a hybrid sintering system for efficient processing. The heat distribution in the furnace was observed using thermal paper that is coated with a material formulated to change color when exposed to heat. Based on this result, sintered cylindrical KLS-1s with a diameter of 1 cm and a height of 2 cm were fabricated. Densities were measured for the sintered KLS-1s under rotating turntable conditions that have an effect of microwave dispersion. The more dielectrics were arranged, the more microwaves were dispersed reducing the heat concentration, and thus a uniformity of sintered KLS-1s was enhanced.

최근 달에서 에너지자원으로 활용할 수 있는 헬륨-3과 물 등이 발견됨에 따라 달은 심우주 탐사를 위한 전초기지로 주목받고 있다. 따라서 지속가능한 우주행성 탐사를 위해 달 현지 자원을 활용한 건설재료 생산 기술이 요구되고 있다. 본 연구에서는 마이크로파를 이용해 달 표면에서 쉽게 채취할 수 있는 월면토를 소결하여 건설재료로 생산하는 기술에 대한 가능성을 평가하였다. 효율적인 소결을 위해 하이브리드 소결 시스템을 구축하고 소결에 미치는 영향인자에 대한 실험적 연구를 수행하였다. 열에 반응하여 변색되는 감열지를 이용해 소결로 내 열 분포를 사전에 파악하고, 이를 기반으로 약 직경 1cm, 높이 2cm의 원통형 한국형 인공월면토 소결체를 제작하였다. 마이크로파를 분산시키는 효과가 있는 회전조건 하에서 제작된 소결체에 대해 밀도를 측정한 결과 마이크로파를 흡수하는 시료가 복수개로 배치될수록 마이크로파가 분산 흡수되어 높이에 따른 열 집중현상이 줄어들어 소결체의 균일도가 향상되었다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원의 주요사업인 "극한건설 환경 구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발(20210190-001)" 과제의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

References

  1. Agrawal, D. (2006), "Microwave Sintering of Ceremics, Composites and Metallic Materials, and Melting of Glasses", T. Indian Ceram. Soc., Vol.65, No.3, pp.129-144. https://doi.org/10.1080/0371750X.2006.11012292
  2. Allan, S.M., Merritt, B.J., Griffin, B.F., Hintze, P.E., and Shulman, H.S. (2013), "High-temperature Microwave Dielectric Properties and Processing of JSC-1AC Lunar Simulant", J. Aerosp. Eng., Vol.26, No.4, pp.874-881. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000179
  3. Balla, V.K., Roberson, L.B., O'Connor, G.W., Trigwell, S., Bose, S., and Bandyopadhyay, A. (2012), "First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts", Rapid Prototyping J., Vol.18, No.6, pp.451-457. https://doi.org/10.1108/13552541211271992
  4. Bhattacharya, M. and Basak, T. (2016), "A Review on the Susceptor Assisted Microwave Processing of Materials", Energy, Vol.97, pp.306-338. https://doi.org/10.1016/j.energy.2015.11.034
  5. Bradshaw, S., Delport, S., and Wyk, E.V. (1997), "Qualitative Measurement of Heating Uniformity in a Multimode Microwave Cavity", J. Microwave Power EE., Vol.32, No.2, pp.87-95.
  6. Brent, S. (2019), "Principles for a Practical Moon base", Acta Astronaut., Vol.160, pp.116-124. https://doi.org/10.1016/j.actaastro.2019.04.018
  7. Carrier, W.D. (1973), "Lunar Soil Grain Size Distribution", The moon, Vol.6, No.3, pp.250-263. https://doi.org/10.1007/BF00562206
  8. Carrier, W.D., Mitchell, J.K., and Mahmood, A. (1973), "The Nature of Lunar Soil", J. Soil Mech. Found. Div., Vol.99, pp.813-832. https://doi.org/10.1061/JSFEAQ.0001935
  9. Christian, S., Lukas, W., and Thomas, R. (2018), "Sustainable Challenges on the Moon", Curr. Opin. Green Sust., Vol.9, pp.8-12. https://doi.org/10.1016/j.cogsc.2017.10.002
  10. Fateri, M. and Gebhardt, A. (2015), "Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-site Manufacturing Applications", Int. J. Appl. Ceram. Tec., Vol.12, No.1, pp.46-52. https://doi.org/10.1111/ijac.12326
  11. Goulas, A., Binner, J.G.P., Harris, R.A., and Friel, R.J. (2017), "Assessing Extraterrestrial Regolith Material Simulants for In-situ Resource Utilisation based 3D Printing", Appl. Mater. Today, Vol.6, pp.54-61. https://doi.org/10.1016/j.apmt.2016.11.004
  12. Herzig, R., Keefer, R.M., and Lorenson, C.P. (1988), "Oven Effects Affecting Power Distribution in Microwave Cooking", 23rd IMPI Symposium.
  13. Hintze, P.E., Curran, J., and Back, T. (2009), "Lunar Surface Stabilization via Sintering or the Use of Heat Cured Polymers", 47th AIAA Aerospace Science Meeting including The New Horizons Forum and Aerospace Exposition.
  14. Iffat, S. (2015), "Relation between Density and Compressive Strength of Hardened Concrete", Concrete Res. Lett., Vol.6, No.4, pp.182-189.
  15. James, M.H. and Timothy, R.M. (1996), "Modelling Microwave Heating", Appl. Math. Model., Vol.20, pp.3-15. https://doi.org/10.1016/0307-904X(95)00107-U
  16. Jin, H., Kim, Y.J., Ryu, B.H., and Lee, H. (2020), "Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1", J. Korean Geotech. Soc., Vol.36, No.8, pp.17-25. https://doi.org/10.7843/KGS.2020.36.8.17
  17. Ju, H.J. and Zhao, Q. (2009), "Simulation and Experimental Method for Microwave Oven", J. Electron. Sci. Tech. China, Vol.7, No.2, pp.188-191.
  18. Kanamori, H., Udagawa, S., Yoshida, T., Matsumoto, S., and Takagi, K. (1998), "Properties of Lunar Soil Simulant Manufactured in Japan", Space, Vol.98, pp.462-468.
  19. Kharkovsky, S.N. and Hasar, U.C. (2003), "Measurement of Mode Patterns in a High-power Microwave Cavity", IEEE T. Instrum. Meas., Vol.52, No.6, pp.1815-1819. https://doi.org/10.1109/TIM.2003.820453
  20. Kim, Y.J., Jin, H., Ryu, B.H., Lee, J., and Shin, H.S. (2020), "Microstructure and Mechanical Properties of Microwave Sintered Lunar Regolith Simulant", 2020 Spring meeting of the Korean Ceram. Soc.
  21. Kok, L.P., Boon, M.E., and Smid, H.M. (1993), "The Problem of Hot Spots in Microwave Equipment Used for Preparatory", Scanning, Vol.15, No.2, pp.100-109. https://doi.org/10.1002/sca.4950150206
  22. Lim, S., Anand, M., and Rouse, T. (2015), "Estimation of Energy and Material Use of Sintering-based Construction for a Lunar Outpost - with the Example of SinterHab Module Design", 46th Lunar. Planet. Sci. Conference, UK, No. 1076.
  23. Lim, S., Prabhu, V.L., Anand, M., and Taylor, L.A. (2017), "Extraterrestrial Construction Processes - Advancements, Opportunities and Challenges", Adv. Space Res., Vol.60, No.7, pp.1413-1429. https://doi.org/10.1016/j.asr.2017.06.038
  24. Lin, T.D., Skaar, S.B., and O'Gallagher, J.J. (1997), "Proposed Remote-control, Solar-powered Concrete Production Experiment on the Moon", J. Aerospace Eng., Vol.10, No.2, pp.104.109. https://doi.org/10.1061/(ASCE)0893-1321(1997)10:2(104)
  25. Lorenson, C. (1990), "The Why's and How's of Mathematical Modelling for Microwave Heating", Microwave World, Vol.11, No.1, pp.14-23.
  26. McKay, D.S., Heiken, G.H., Taylor, R.M., Clanton, U.S., Morrison, D.A., and Ladle, G.H. (1972), "Apollo 14 Soils: Size Distribution and Particle Types", Third Lunar Science Conference, Houston, Vol.1, pp.983-994.
  27. McKay, D.S., Carter, J.L., Boles, W.W., Allen, C.C., and Allton, J.H. (1994), "JSC-1: A New Lunar Soil Simulant", Eng. Constr. Oper. Space IV, ASCE, pp.857-866.
  28. Meurisse, A., Cowley, A., Cristoforetti, S., Makaya, A., Pambaguian, L., and Sperl, M. (2018), "Solar 3D Printing of Lunar Regolith", Acta Astronaut., Vol.152, pp.800-810. https://doi.org/10.1016/j.actaastro.2018.06.063
  29. Mishra, R.R. and Sharma, A.K. (2016), "Microwave Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing", Composites: Part A, Vol.81, pp.78-97. https://doi.org/10.1016/j.compositesa.2015.10.035
  30. NRMCA (2003), "Concrete in Practice; What, why & how?", CIP 35 - Testing Compressive Strength of Concrete, NRMCA (National Ready Mixed Concrete Association).
  31. Oghbaei, M. and Mirzaee, O. (2010), "Microwave Versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications", J. Al l oy Compd., Vol.494, pp.175-189. https://doi.org/10.1016/j.jallcom.2010.01.068
  32. Pozar, D.M. (2011), "Microwave Engineering", 4th Edition, John Wiley & Sons, Inc., USA.
  33. Ryu, B.H., Baek, Y., Kim, Y.S., and Chang, I. (2015), "Basic Study for a Korean Lunar Simulant (KLS-1) Development", J. Korean Geotech. Soc., Vol.31, No.7, pp.53-63. https://doi.org/10.7843/kgs.2015.31.7.53
  34. Ryu, B.H., Wang, C.C., and Chang, I. (2018). "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", J. Aerosp. Eng., Vol.31, No.1, pp.0417083-1-11.
  35. Sato, M., Muton, T., Shimotuma, T., Ida, K., Motojima, O., Fujiwara, M., Takayama, S., Mizuno, M., Obata, S., Ito, K., Hirai, T., and Shimada, T. (2003), "Recent Development of Microwave Kilns for Industries in Japan", Proceedings of 3rd World Congress on Microwave and Radio Frequency Applications.
  36. Sauerborn, M., Neumann, A., Seboldt, W., and Diekmann, B. (2004), "Solar Heated Vacuum Pyrolysis of Lunar Soil", 35th COSPAR Scientific Assembly.
  37. Sikalidis, C. (2011), "Advances in ceramics: Synthesis and characterization, processing and specific applications", IntechOpen.
  38. Spray, J.G. (2010), "Generation of a Lunar Regolith Agglutinate Simulant Using Friction Welding Apparatus", Planet. Space Sci., Vol.58, No.14-15, pp.1771-1774. https://doi.org/10.1016/j.pss.2010.09.002
  39. Taylor, L.A. and Meek, T.T. (2005), "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice", J. Aerosp. Eng., Vol.18, No.3, pp.188-196. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:3(188)
  40. Taylor, L.A., Pieters, C., Patchen, A., Taylor, D.-H.S., Morris, R.V., Keller, L.P., and McKay, D.S. (2010), "Mineralogical and Chemical Characterization of Lunar Highland Soils: Insights into the Space Weathering of Soils on Airless Bodies", J. Geophys. Res.-Planet, Vol.115, E02002, pp.1-14.
  41. Weiblen, P. W., Murawa, M. J., and Reid, K. J. (1990), "Prep aration of Simulants for Lunar Surface Materials", Eng. Constr. Oper. Space IV, ASCE, pp.428-435.
  42. Weiren, W., Chunlai, L., Wei, Z., Hongbo, Z., Jianjun, L., Weibin, W., Yan, S., Xin, R., Jun, Y., Dengyun, Y., Guangliang, D., Chi, W., Zezhou, S., Enhai, L., Jianfeng, Y., and Ziyuan, O. (2019), "Lunar Farside to be Explored by Chang'e-4", Nat. Geosci., Vol.12, pp.222-223. https://doi.org/10.1038/s41561-019-0341-7
  43. Wickersheim, K., Sun, M., and Kamal, A. (1990), "A Small Microwave E-field Probe Utilizing Fiberoptic Thermometry", J. Microwave Power EE., Vol.25, pp.141-148.
  44. Zheng, Y., Wang, S., Ziyuan, O., Yongliao, Z., Jianzhong, L., Chunlai, L., Xiongyao, L., and Junming, F. (2009), "CAS-1 Lunar Soil Simulant" Adv. Space Res., Vol.43, No.3, pp.448-454. https://doi.org/10.1016/j.asr.2008.07.006
  45. Micro Denshi Co., Ltd., "Basics of Microwave", Retrieved from https://www.microdenshi.co.jp/en/microwave/