References
- Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006.0008. https://doi.org/10.1038/msb4100050
- Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, et al. 2019. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17: 441-448. https://doi.org/10.1038/s41579-019-0196-3
- Balcazar JL, Subirats J, Borrego CM. 2015. The role of biofilms as environmental reservoirs of antibiotic resistance. Front. Microbiol. 6: 1216. https://doi.org/10.3389/fmicb.2015.01216
- Brown DR. 2019. Nitrogen starvation induces persister cell formation in Escherichia coli. J. Bacteriol. 201: e00622-18. https://doi.org/10.1128/JB.00287-19
- Bruhn-Olszewska B, Szczepaniak P, Matuszewska E, Kuczynska-Wisnik D, Stojowska-Swedrzynska K, Moruno Algara M. et al. 2018. Physiologically distinct subpopulations formed in Escherichia coli cultures in response to heat shock. Microbiol. Res. 209: 33-42. https://doi.org/10.1016/j.micres.2018.02.002
- Chulluncuy R, Espiche C, Nakamoto J, Fabbretti A, Milon P. 2016. Conformational response of 30S-bound IF3 to A-site binders streptomycin and kanamycin. Antibiotics. 5: 38. https://doi.org/10.3390/antibiotics5040038
- Churchward CP, Alany RG, Snyder LAS. 2018. Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit. Rev. Microbiol. 44: 561-570. https://doi.org/10.1080/1040841x.2018.1467875
- Ciofu O, Tolker-Nielsen T. 2019. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-how P. aeruginosa can escape antibiotics. Front. Microbiol. 10: 913. https://doi.org/10.3389/fmicb.2019.00913
- Davies DG, Marques CNH. 2009. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 191: 1393-1403. https://doi.org/10.1128/JB.01214-08
- Dayrit FM. 2015. The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 92: 1-15. https://doi.org/10.1007/s11746-014-2562-7
- Delcour AH. 2009. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta - Proteins Proteomics. 1794: 808-816. https://doi.org/10.1016/j.bbapap.2008.11.005
- Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 85: 1629-1642. https://doi.org/10.1007/s00253-009-2355-3
- Dubois-Brissonnet F, Trotier E, Briandet R. 2016. The biofilm lifestyle involves an increase in bacterial membrane saturated fatty acids. Front. Microbiol. 7: 1673. https://doi.org/10.3389/fmicb.2016.01673
- Fair RJ, Tor Y. 2014. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 6: 25-64. https://doi.org/10.4137/pmc.s14459
- Fang K, Jin X, Hong SH. 2018. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci. Rep. 8: 4939. https://doi.org/10.1038/s41598-018-23180-1
- Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15: 453-464. https://doi.org/10.1038/nrmicro.2017.42
- Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14: 563-575. https://doi.org/10.1038/nrmicro.2016.94
- Fujita Y, Matsuoka H, Hirooka K. 2007. Regulation of fatty acid metabolism in bacteria. Mol. Microbiol. 66: 829-839. https://doi.org/10.1111/j.1365-2958.2007.05947.x
- Gollan B, Grabe G, Michaux C, Helaine S. 2019. Bacterial persisters and infection: past, present, and progressing. Annu. Rev. Microbiol. 73: 359-385. https://doi.org/10.1146/annurev-micro-020518-115650
- Goneau LW, Yeoh NS, MacDonald KW, Cadieux PA, Burton JP, Razvi H, et al. 2014. Selective target inactivation rather than global metabolic dormancy causes antibiotic tolerance in uropathogens. Antimicrob. Agents Chemother. 58: 2089-2097. https://doi.org/10.1128/AAC.02552-13
- Hall CW, Mah T-F. 2017. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 010: 276-301. https://doi.org/10.1093/femsre/fux010
- Jaishankar J, Srivastava P. 2017. Molecular basis of stationary phase survival and applications. Front. Microbiol. 8: 2000. https://doi.org/10.3389/fmicb.2017.02000
- Jimenez-Diaz L, Caballero A, Segura A. 2017. Pathways for the degradation of fatty acids in bacteria. pp. 1-23. In: Aerobic Utilization of Hydrocarbons, Oils and Lipids, Springer International Publishing.
- Jin, X., Kightlinger, W., Kwon, Y.-C. and Hong, S. H. 2018. Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synth. Biol. 3: ysy004. https://doi.org/10.1093/synbio/ysy004
- Karki P, Mohiuddin SG, Kavousi P, Orman MA. 2020. Investigating the effects of osmolytes and environmental pH on bacterial persisters. Antimicrob. Agents Chemother. 64: e02393-19.
- Kim HS, Ham SY, Jang Y, Sun PF, Park JH, Hoon Lee, .Park HD. 2019. Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel 253: 754-761. https://doi.org/10.1016/j.fuel.2019.05.064
- Krzyzek P, Gosciniak G. 2018. A proposed role for diffusible signal factors in the biofilm formation and morphological transformation of Helicobacter pylori. Turk. J. Gastroenterol. 29: 7-13. https://doi.org/10.5152/tjg.2017.17349
- Kumar, P., Lee, J. H., Beyenal, H. and Lee, J. 2020. Fatty acids as antibiofilm and antivirulence agents. Trends Microbiol. 28: 753-768. https://doi.org/10.1016/j.tim.2020.03.014
- Liaw S-J, Lai H-C, Wang W-B. 2004. Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect. Immun. 72: 6836-6845. https://doi.org/10.1128/IAI.72.12.6836-6845.2004
- Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157: 539-548. https://doi.org/10.1016/j.cell.2014.02.050
- Marques CNH, Davies DG, Sauer K. 2015. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals 8: 816-835. https://doi.org/10.3390/ph8040816
- Marques CNH, Morozov A, Planzos P, Zelaya HM. 2014. The fatty acid signaling molecule cis-2-decenoic acid increases metabolic activity and reverts persister cells to an antimicrobial-susceptible state. Appl. Environ. Microbiol. 80: 6976-6991. https://doi.org/10.1128/AEM.01576-14
- McGaw LJ, Jager AK, van Staden J. 2002. Antibacterial effects of fatty acids and related compounds from plants. South Afr. J. Bot. 68: 417-423. https://doi.org/10.1016/s0254-6299(15)30367-7
- McKay SL, Portnoy DA. 2015. Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob. Agents Chemother. 59: 6992-6999. https://doi.org/10.1128/AAC.01532-15
- Olsen I. 2015. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34: 877-886. https://doi.org/10.1007/s10096-015-2323-z
- Petrovic S, Arsic A. 2016. Fatty acids: fatty acids. pp. 623-631. In: Encyclopedia of Food and Health, Elsevier Inc.
- Poole K. 2012. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20: 227-234. https://doi.org/10.1016/j.tim.2012.02.004
- Ranjbar R, Masoudimanesh M, Dehkordi FS, Jonaidi-Jafari N, Rahimi E. 2017. Shiga (Vero)-toxin producing Escherichia coli isolated from the hospital foods virulence factors, o-serogroups and antimicrobial resistance properties. Antimicrob. Resist. Infect. Control 6: 1-11. https://doi.org/10.1186/s13756-016-0153-0
- Salisbury A-M, Woo K, Sarkar S, Schultz G, Malone M, Mayer DO. et al. 2018. Tolerance of biofilms to antimicrobials and significance to antibiotic resistance in wounds. Surg. Technol. Int. 33: 59-66.
- Schuster CF, Mechler L, Nolle N, Krismer B, Zelder M-E, Gotz F, et al. 2015. The MazEF toxin-antitoxin system alters the β-lactam susceptibility of Staphylococcus aureus. PLoS One 10: e0126118. https://doi.org/10.1371/journal.pone.0126118
- Shan Y, Lazinski D, Rowe S, Camilli A, Lewis K. 2015. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. MBio 6: e00078-15.
- Shao X, Fang K, Medina D, Wan J, Lee JL, Hong SH. 2019. The probiotic, Leuconostoc mesenteroides, inhibits Listeria monocytogenes biofilm formation. J. Food Saf. 40: e12750.
- Shilling M, Matt L, Rubin E, Visitacion MP, Haller NA, Grey SF, et al. 2013. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile. J. Med. Food 16: 1079-1085. https://doi.org/10.1089/jmf.2012.0303
- Silva LN, Zimmer KR, Macedo AJ, Trentin DS. 2016. Plant natural products targeting bacterial virulence factors. Chem. Rev. 116: 9162-9236. https://doi.org/10.1021/acs.chemrev.6b00184
- Song S, Wood TK. 2020. A primary physiological role of toxin/antitoxin systems is phage inhibition. Front. Microbiol. 11: 1895. https://doi.org/10.3389/fmicb.2020.01895
- Song S, Wood TK. 2020. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem. Biophys. Res. Commun. 523: 281-286. https://doi.org/10.1016/j.bbrc.2020.01.102
- Wang M, Fang K, Hong SMC, Kim I, Jang IS, Hong SH. 2018. Medium chain unsaturated fatty acid ethyl esters inhibit persister formation of Escherichia coli via antitoxin HipB. Appl. Microbiol. Biotechnol. 102: 8511-8524. https://doi.org/10.1007/s00253-018-9271-3
- Wood TK, Song S. 2020. Forming and waking dormant cells: the ppGpp ribosome dimerization persister model. Biofilm 2: 100018. https://doi.org/10.1016/j.bioflm.2019.100018
- Yang H-T, Chen J-W, Rathod J, Jiang Y-Z, Tsai P-J, Hung Y-P, et al. 2017. Lauric acid is an inhibitor of Clostridium difficile growth in vitro and reduces inflammation in a mouse infection model. Front. Microbiol. 8: 2635. https://doi.org/10.3389/fmicb.2017.02635
- Yang QE, Walsh TR. 2017. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol. Rev. 41: 343-353. https://doi.org/10.1093/femsre/fux006
- Yoon BK, Jackman JA, Valle-Gonzalez ER, Cho NJ. 2018. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 19: 1114. https://doi.org/10.3390/ijms19041114
- Zhou J, Velliou E, Hong SH. 2020. Investigating the effects of nisin and free fatty acid combined treatment on Listeria monocytogenes inactivation. LWT 133: 110115. https://doi.org/10.1016/j.lwt.2020.110115
Cited by
- Lauric Acid Is a Potent Biological Control Agent That Damages the Cell Membrane of Phytophthora sojae vol.12, 2021, https://doi.org/10.3389/fmicb.2021.666761
- Serum metabolome and gut microbiome alterations in broiler chickens supplemented with lauric acid vol.100, pp.9, 2021, https://doi.org/10.1016/j.psj.2021.101315
- Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms vol.179, 2021, https://doi.org/10.1016/j.addr.2021.114019
- Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation-Extraction and Headspace Solid-Phase Microextraction vol.26, pp.24, 2021, https://doi.org/10.3390/molecules26247422
- Bio-packaging based on cellulose acetate from banana pseudostem and containing Butia catarinensis extracts vol.194, 2021, https://doi.org/10.1016/j.ijbiomac.2021.11.179